Adsorption of Copper(II) on Dithizone-Immobilized Coal Fly Ash

Article Preview

Abstract:

The adsorption of Cu (II) ions onto selective adsorbent of coal fly ash from Sugar Factory Madukismo, Yogyakarta, Indonesia modified with dithizone has been investigated in batch mode. Some parameters influencing immobilization of dithizone and adsorption of Cu (II) were optimized including an effect of pH, contact time and initial concentration of Cu (II) ions. The FT-IR and XRD analytical results show that the surface of coal fly ash can be modified by immobilization of selective organic ligand towards Cu (II) ions. The optimum conditions for adsorption of Cu (II) are achieved at pH 5, the optimum mass of DICFA and ACFA for copper adsorption were 0.2 g. Kinetics adsorption for copper ions follows pseudo-second-order kinetics with optimum adsorption contact time 60 min for DICFA and ACFA. Isotherms adsorption for Cu ion follow the Langmuir isotherms with chemisorption process and optimum concentration of Cu ion adsorption of 70 mg.L-1 for DICFA and ACFA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-56

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.C. Hsu, C.C. Yu, C.M. Yeh, Adsorption of Cu2+ from Water Using Raw and Modified Coal Fly Ashes, Fuel 87 (2008) 1355-1359.

DOI: 10.1016/j.fuel.2007.05.055

Google Scholar

[2] S. A. Drweesha, N. A. Fathy, M. A A. Wahbaa, A. I.M. Akarish, E. A.M., E. Elzahanya, I. Y. El-Sherifd, K.S. Abou-El-Sherbini., Equilibrium, kinetic and thermodynamic studies of Pb(II) adsorption from aqueous solutions on HCl-treated Egyptian kaolin, J. Environ Chem Eng. 4 (2016) 1674–1684.

DOI: 10.1016/j.jece.2016.02.005

Google Scholar

[3] L.C. Thomas, G.J. Chamberlin, Colorimetric chemical analytical methods, The Tintometer Ltd., (1980).

Google Scholar

[4] M. Mudasir, K. Karelius, N.H. Aprilita, E. T. Wahyuni, Adsorption of mercury(II) on dithizone-immobilized natural zeolite, J. Environ. Chem. Eng. 4 (2016) 1839-1849.

DOI: 10.1016/j.jece.2016.03.016

Google Scholar

[5] A.D. Papandreou, C.J. Stournaras, D. Panias, I. Paspaliaris, Adsorption of Pb(II), Zn(II) and Cr(III) on coal fly ash porous pellets, Miner. Eng. 24 (2011) 1495–1501.

DOI: 10.1016/j.mineng.2011.07.016

Google Scholar

[6] M. Mudasir, D. Maryanti, G. Pramiyanti, R. Roto, Preconcentration study of Pb (II) and Cd(II) from aqueous solution using silica gel loaded with dithizone, J. Ion Exch. 18 (2007) 516–517.

DOI: 10.5182/jaie.18.516

Google Scholar

[7] L. C. Ram, R. E. Masto, An appraisal of the potential use of fly ash for reclaiming coal mine spoil, J. Environ. Manage. 91 (2010) 603–617.

DOI: 10.1016/j.jenvman.2009.10.004

Google Scholar

[8] R.S. Blissett, N.A. Rowson, A review of the multi-component utilisation of coal fly ash, Fuel 97 (2012) 1–23.

DOI: 10.1016/j.fuel.2012.03.024

Google Scholar

[9] Z. Marczenko, Separation and spectrophotometric determination of elements, Ellis Horwood Ltd., (1986).

Google Scholar

[10] M.E. Mahmoud, M.M. Osman, O.F. Hafez, A.H. Hegazi, E. Elmelegy, Removal and preconcentration of lead(II) and other heavy metals from water by alumina adsorbents developed by surface-adsorbed dithizone, Desalination 251 (2010) 123–130.

DOI: 10.1016/j.desal.2009.08.008

Google Scholar

[11] B. Salih, A. Denizli, C. Kavakli, R. Say, E. Piskin, Adsorption of heavy metal ions onto dithizone-anchored poly (EGDMA-HEMA) microbeads, Talanta 46 (1998) 1205–1213.

DOI: 10.1016/s0039-9140(97)00362-7

Google Scholar

[12] S. Erenturk, E. Malkoc, Removal of lead(II) by adsorption onto Viscum album L.: Effect of temperature and equilibrium isotherm analyses, Appl. Surf. Sci. 253 (2007) 4727–4733.

DOI: 10.1016/j.apsusc.2006.10.042

Google Scholar

[13] A. Sari, M. Tuzen, D. Citak, M. Soylak, Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. J. Hazard. Mater. 149 (2007) 283–291.

DOI: 10.1016/j.jhazmat.2007.03.078

Google Scholar

[14] W. Stumm, J.J. Morgan, Aquatic chemistry: chemical equilibria rates in natural waters, Wiley. New York, (1996).

Google Scholar

[15] S. K. Çetin, E. Pehlivan, The use of fly ash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions, Colloids Surf. A.physicochem. Eng. Asp. 298 (2007) 83-87.

DOI: 10.1016/j.colsurfa.2006.12.017

Google Scholar