Synthesis of Glutaraldehyde-Crosslinked Carboxymethyl Cellulose-Polyvinyl Alcohol Film as an Adsorbent for Methylene Blue

Article Preview

Abstract:

The glutaraldehyde (GA)-crosslinked carboxymethyl cellulose (CMC)-polyvinyl alcohol (PVA) film had been synthesized and used as a methylene blue adsorbent. The films were prepared using a solution casting technique and characterized using FTIR spectrophotometer, SEM. Adsorption studies include pH, contact time, methylene blue initial concentration. Furthermore, the desorption study of films was carried out using NaCl, HCl and distilled water. The results of FTIR characterization showed similarities between the spectra of CMC-PVA-GA films with their component materials. The SEM image of CMC-PVA-GA films showed a non-porous surface. In the adsorption study, GA-crosslinked CMC-PVA films (1:2 w/w) exhibited the largest adsorption capacity of methylene blue at optimum conditions for adsorption at pH 7, contact time 200 min, methylene blue concentration of 200 mg L–1 which was 194 mg g–1. Methylene blue adsorption kinetic followed the pseudo second-order kinetic model and the Langmuir adsorption isotherm model. The desorption studies show that adsorption takes place through an ion exchange mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-42

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, H. Zeng, Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal, ACS Appl. Mater. Inter. 6 (2014) 8845–8852.

DOI: 10.1021/am501632f

Google Scholar

[2] H. Yan, H. Li, X. Tao, K. Li, H. Yang, A. Li, S. Xiao, R. Cheng, Rapid removal and separation of iron(II) and manganese(II) from micropolluted water using magnetic graphene oxide, ACS Appl. Mater. Inter. 6 (2014) 9871–9880.

DOI: 10.1021/am502377n

Google Scholar

[3] E.I. Unuabonah, C. Günter, J. Weber, S. Lubahn, A. Taubert, Hybrid clay: a new highly efficient adsorbent for water treatment, ACS Sustain. Chem. Eng. 1 (2013) 966–973.

DOI: 10.1021/sc400051y

Google Scholar

[4] Y.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dye. Pigment 77 (2008) 16–23.

DOI: 10.1016/j.dyepig.2007.03.001

Google Scholar

[5] G.Z. Kyzas, N.K. Lazaridis, Reactive and basic dyes removal by sorption onto chitosan derivatives, J. Colloid. Interface Sci. 331 (2009) 32–39.

DOI: 10.1016/j.jcis.2008.11.003

Google Scholar

[6] R.O.A. de Lima, A.P. Bazo, D.M.F. Salvadori, C.M. Rech, D. de Palma Oliveira, G. de Aragão Umbuzeiro, Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source, Mutat. Res. Toxicol. Environ. Mutagen. 626 (2007) 53–60.

DOI: 10.1016/j.mrgentox.2006.08.002

Google Scholar

[7] I.D. Mall, V.C. Srivastava, N.K. Agarwal, Removal of orange-g and methyl violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses, Dye. Pigment 69 (2006) 210–223.

DOI: 10.1016/j.dyepig.2005.03.013

Google Scholar

[8] K.V. Kumar, V. Ramamurthi, S. Sivanesan, Modeling the mechanism involved during the sorption of methylene blue onto fly ash, J. Colloid Interface Sci. 284 (2005) 14–21.

DOI: 10.1016/j.jcis.2004.09.063

Google Scholar

[9] R. Han, J. Zhang, W. Zou, J. Shi, H. Liu, Equilibrium biosorption isotherm for lead ion on chaff, J. Hazard. Mater. 125 (2005) 266–271.

DOI: 10.1016/j.jhazmat.2005.05.031

Google Scholar

[10] Y.-S. Ho, W.-T. Chiu, C.-C. Wang, Regression analysis for the sorption isotherms of basic dyes on sugarcane dust, Bioresour. Technol. 96 (2005) 1285–1291.

DOI: 10.1016/j.biortech.2004.10.021

Google Scholar

[11] V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling‒an overview, Rsc. Adv. 2 (2012) 6380–6388.

DOI: 10.1039/c2ra20340e

Google Scholar

[12] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater. 177 (2010) 70–80.

DOI: 10.1016/j.jhazmat.2009.12.047

Google Scholar

[13] K. Rastogi, J.N. Sahu, B.C. Meikap, M.N. Biswas, Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone, J. Hazard. Mater. 158 (2008) 531–540.

DOI: 10.1016/j.jhazmat.2008.01.105

Google Scholar

[14] Z. Li, P.-H. Chang, W.-T. Jiang, J.-S. Jean, H. Hong, Mechanism of methylene blue removal from water by swelling clays, Chem. Eng. J. 168 (2011) 1193–1200.

DOI: 10.1016/j.cej.2011.02.009

Google Scholar

[15] V.K. Garg, M. Amita, R. Kumar, R. Gupta, Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste, Dye. Pigment. 63 (2004) 243–250.

DOI: 10.1016/j.dyepig.2004.03.005

Google Scholar

[16] S. Altenor, B. Carene, E. Emmanuel, J. Lambert, J.J. Ehrhardt, S. Gaspard, Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation, J. Hazard. Mater. 165 (2009) 1029–1039.

DOI: 10.1016/j.jhazmat.2008.10.133

Google Scholar

[17] T. Madrakian, A. Afkhami, M. Ahmadi, H. Bagheri, Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes, J. Hazard. Mater. 196 (2011) 109–114.

DOI: 10.1016/j.jhazmat.2011.08.078

Google Scholar

[18] P. Sharma, H. Kaur, M. Sharma, V. Sahore, A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste, Environ. Monit. Assess. 183 (2011) 151–195.

DOI: 10.1007/s10661-011-1914-0

Google Scholar

[19] E. Grzkadka, S. Chibowski, Adsorption and elektrokinetic properties of the system: carboxymethylcellulose/manganese oxide/surfactant, Cellulose 19 (2012) 23–36.

DOI: 10.1007/s10570-011-9611-2

Google Scholar

[20] A. Salama, N. Shukry, M. El-Sakhawy, Carboxymethyl cellulose-g-poly (2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal, Int. J. Biol. Macromol. 73 (2015) 72–75.

DOI: 10.1016/j.ijbiomac.2014.11.002

Google Scholar

[21] V. Alves, N. Costa, L. Hilliou, F. Larotonda, M. Gonçalves, A. Sereno, I. Coelhoso, Design of biodegradable composite films for food packaging, Desalination 199 (2006) 331–333.

DOI: 10.1016/j.desal.2006.03.078

Google Scholar

[22] R. Wahyuni, Synthesis of glutaraldehyde (GA)-crosslinked carboxymethyl cellulose (CMC)-polyvinyl alcohol (PVA) film as adsorbent of methylene blue, Universitas Gadjah Mada, (2017).

DOI: 10.4028/www.scientific.net/kem.840.35

Google Scholar

[23] H.S. Mansur, C.M. Sadahira, A.N. Souza, A.A.P. Mansur, FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Mater. Sci. Eng. C. 28 (2008) 539–548.

DOI: 10.1016/j.msec.2007.10.088

Google Scholar

[24] E. Marin, J. Rojas, Preparation and characterization of crosslinked a films alcohol with waterprof properties, Int. J. Pharm. Pharm. Sci. 7 (2015) 242–248.

Google Scholar

[25] O. Hamdaoui, Dynamic sorption of methylene blue by cedar sawdust and crushed brick in fixed bed columns, J. Hazard. Mater. 138 (2006) 293–303.

DOI: 10.1016/j.jhazmat.2006.04.061

Google Scholar