Button of Hydroxyapatite Composite for Craniotomy Flap Fixation: Fabrication and Mechanical Properties

Article Preview

Abstract:

This paper deals with the development of button made from a hydroxyapatite (HA) and bioglass composite. The HA powder derived from the bovine bone were added 2.5 and 5 wt% of P2O5-CaO-Na2O-bases glass and subsequently sintered at 1200 - 1350 °C to form the HA ceramics. It was observed that the densest HA ceramic could be achieved for the sample composed of hydroxyapatite with the addition of 5 wt% of bioglass and sintered at 1300°C, resulting in the maximum value of bending strength of about 77 MPa, which ensured the use in load bearing applications of this HA ceramic. The HA and 5 wt% bioglass composite is designed as a button for reattach the bone flap after a craniotomy procedure. Each device is comprised of an inner plate and an outer plate. The fabrication processing was used the powder compression and then sintering at 1300°C for 3 h. The button have fracture toughness (K1C) values of 1.3±0.1 MPa.m1/2 and bending strength of 65.7±3.8 MPa. The liquid phase sintering of this sample contributed to the high mechanical properties that can be use as craniotomy flap fixation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

248-253

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.J. Kalita, A. Bhardwaj, H.A. Bhatt. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater. Sci. Eng. C. 27 (2007) 441-449.

DOI: 10.1016/j.msec.2006.05.018

Google Scholar

[2] R. Murugan, S. Ramakrishna. Development of nanocomposites for bone grafting. Comp. Sci. Technol. 65 (2005) 2385-2406.

Google Scholar

[3] G. Gergely, F.C. Sahin, G. Göller, O. Yücel, C. Balázsi. Microstructural and mechanical investigation of hydroxyapatite–zirconia nanocomposites prepared by spark plasma sintering. J. Euro.Ceram. Soc. 33 (2013) 2313-2319.

DOI: 10.1016/j.jeurceramsoc.2013.01.027

Google Scholar

[4] A.H. Karin. Bone repair in the twenty-first century: biology, chemistry or engineering. Phil. Trans. R. Soc. Lond. A. 362 (2004) 2821–2850.

Google Scholar

[5] J. Song. Y. Liu. Y. Zhang. L. Jiao. Mechanical properties of hydroxyapatite ceramics sintered from powders with different morphologies. Mater. Sci. Eng. A. 528 (2011) 5421-5427.

DOI: 10.1016/j.msea.2011.03.078

Google Scholar

[6] S. Ramesh. C.Y. Tan. I. Sopyan, M. Hamdi. W.D. Teng. Consolidation of nanocrystalline hydroxyapatite powder. Sci. Technol. Adv. Mater. 8 (2007) 124-130.

DOI: 10.1016/j.stam.2006.11.002

Google Scholar

[7] M.A. Lopes. F.J. Monterio. J.D. Santos. Glass–reinforced hydroxyapatite composites (fracture tougthness and hardness dependence on microstrutural characteristics). Biomaterials. 20 (1999) 2085–(2090).

DOI: 10.1016/s0142-9612(99)00112-x

Google Scholar

[8] W. Suchanek. M. Yashima. M. Kakihana M. Yashimura. Hydroxyapatite/hydroxyapatite‐whisker composites without sintering additives: Mechanical properties and microstructural evolution. J. Amer. Ceram. Soc. 80 (1997) 2805–2813.

DOI: 10.1111/j.1151-2916.1997.tb03197.x

Google Scholar

[9] F.N. Oktar. G. Goller. Sintering effects on mechanical properties of glass-reinforced hydroxyapatite composites. Ceram Int. 28 (2002) 617-621.

DOI: 10.1016/s0272-8842(02)00017-2

Google Scholar

[10] S.J. Kalita. S. Bose. H.L. Hosick. A. Bandyopadhyay. CaO – P2O5 –Na2O-based sintering additives for hydroxyapatita ( HAp) ceramics. Biomaterials. 25 (2004) 2331-2339.

DOI: 10.1016/j.biomaterials.2003.09.012

Google Scholar

[11] J.C. Knowles. W. Bonfield. Development of a glass reinforced hydroxyapatite with enhanced mechanical properties. The effect of glass composition on mechanical properties and its relationship to phase changes. J. Biomed. Mater. Res. 27 (1993) 1591–1598.

DOI: 10.1002/jbm.820271217

Google Scholar

[12] E. Bouyer. M. Gitzhofer. M.I. Boulos. Morphological study of hydroxyapatite nanocrystal suspension. J. Mater. Sci, Mater. Med. 11(8) (2000) 523-531.

Google Scholar

[13] R.E. Riman. W.L. Suchanek. K. Byrappa. C. Chun-Wie. P. Shuk. C.S. Oakes. Solution synthesis of hydroxyapatite designer particulates. Solid. State. Ionics. 151 (2002) 393-402.

DOI: 10.1016/s0167-2738(02)00545-3

Google Scholar

[14] M.A. Meyers, A. Mishra. D.J. Benson. Mechanical properties of nanocrystalline materials. Progress. In. Mater. Sci. 51 (2006) 427-556.

DOI: 10.1016/j.pmatsci.2005.08.003

Google Scholar

[15] G. Dewith. H.H.M. Wagemans. Ball-on-ring test revisited. J. Amer. Ceram. Soc. 72(8) (1989) 1538-1541.

Google Scholar

[16] J.A. Juhasza. S.M. Besta. R. Brooksb. M. Kawashitac. N. Miyatac. T. Kokuboc. T. Nakamurad. W. Bonfielda. Mechanical properties of glass-ceramic A-W-polyethylenecomposites: effect of filler content and particle size. Biomaterials. 25 (2004) 949–955.

DOI: 10.1016/j.biomaterials.2003.07.005

Google Scholar

[17] S.J. Kalita. A. Bhardwa. H.A Bhatt. Mater. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Sci. Eng. C. 27(3) (2007) 441-449.

DOI: 10.1016/j.msec.2006.05.018

Google Scholar