Characterization of Adsorbents Derived from Palm Fiber Waste and its Potential on Methylene Blue Adsorption

Article Preview

Abstract:

In this study, two types of adsorbent including activated carbon and bio-sorbent were produced from Palm fiber wastes (PFW), which were activated by phosphoric acid. The influence of adsorbent type and phosphoric acid concentration on methylene blue adsorption was investigated. The most optimum adsorbent was determined based on adsorption capacity and removal percentage of each adsorbent. The result shows that 9.984 mg/g of adsorption capacity and 99.84% of removal percentage were achieved in 90 minutes’ adsorption, which demonstrates the huge potential of bio-sorbent and was chosen to be the most optimum adsorbent based on methylene blue removal. The characterization of bio-sorbent was then investigated using FTIR and SEM. FTIR result shows that bio-sorbent contains cellulose which affected the adsorption process while SEM result shows the cleaner pores and surface compared to bio-sorbent before activation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

273-277

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ö. Tunç, H. Tanaci, Z. Aksu, Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye, J. Hazard. Mater. 163(1) (2009) 187-198.

DOI: 10.1016/j.jhazmat.2008.06.078

Google Scholar

[2] L. Mouni, et al. Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies, Appl. Clay Sci. 153 (2018) 38-45.

DOI: 10.1016/j.clay.2017.11.034

Google Scholar

[3] L. Liu, Z. Y. Gao, X. P. Su, X. Chen, L. Jiang, J. M. Yao, Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent, ACS Sustain. Chem. Eng. 3(3) (2015) 432-442.

DOI: 10.1021/sc500848m

Google Scholar

[4] C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, A. B. Pandit, A critical review on textile wastewater treatments: Possible approaches, J. Environ. Manage. 182 (2016) 351-366.

DOI: 10.1016/j.jenvman.2016.07.090

Google Scholar

[5] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: A review, J. Hazard. Mater. 177(1-3) (2010) 70-80.

DOI: 10.1016/j.jhazmat.2009.12.047

Google Scholar

[6] D. Pathania, S. Sharma, P. Singh, Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arab. J. Chem. 10 (2017) S1445-S1451.

DOI: 10.1016/j.arabjc.2013.04.021

Google Scholar

[7] Y. Koba, A. Ishizaki, Chemical composition of palm fiber and its feasibility as cellulosic raw material· for sugar production, Agric. Biol. Chem. 54(5) (1990) 1183-1187.

DOI: 10.1080/00021369.1990.10870116

Google Scholar

[8] G. Pari, I. Sailah, Pembuatan Arang Aktif Dari Sabut Kelapa Sawit Dengan Bahan Pengaktif NH4HCO3 Dan (NH4)2CO3 Dosis Rendah 1, J. Penelitian Hasil Hutan. 19(4) (2001) 231-244.

DOI: 10.20886/jphh.2006.24.2.117-132

Google Scholar

[9] D. S. Tong, et al. Adsorption of methylene blue from aqueous solution onto porous cellulose-derived carbon/montmorillonite nanocomposites, Appl. Clay Sci. 161 (2018) 256-264.

DOI: 10.1016/j.clay.2018.02.017

Google Scholar

[10] A. S. Manna, D. Roy, P. Saha, Rapid methylene blue adsorption using modified lignocellulosic materials, Process Saf. Environ. Prot. 107 (2017) 346-356.

DOI: 10.1016/j.psep.2017.03.008

Google Scholar

[11] M.T. Sundari, A. Ramesh, Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth - Eichhornia crassipes, Carbohydr. Polym. 87(12) (2012) 1701-1705.

DOI: 10.1016/j.carbpol.2011.09.076

Google Scholar

[12] L. Ni'mah, A. Ardiyanto, M. Zainuddin, Pembuatan Bioetanol Dari Limbah Serat Kelapa Sawit Melalui Proses Pretreatment , Hidrolisis Asam Dan Fermentasi Menggunakan Ragi Tempe, Info Tek. 16(2) (2015) 227-242.

DOI: 10.46559/tegi.v11i1.5214

Google Scholar

[13] Gatot Siswo Hutomo, D. W. Marseno, S. Anggrahini, Supriyanto, Cellulose Extraction from Cacao Pod Husk Using Sodium Hydroxide, Agritech. 32(3) (2012) 223-229.

Google Scholar

[14] M. Fan, D. Dai, B. Huang, Fourier Transform Infrared Spectroscopy for Natural Fibres, Fourier Transform - Mater. Anal. (2012).

DOI: 10.5772/35482

Google Scholar

[15] J. Łojewska, P. Miśkowiec, T. Łojewski, L. M. Proniewicz, Cellulose oxidative and hydrolytic degradation: In situ FTIR approach, Polym. Degrad. Stab. 88(3) (2005) 512-520.

DOI: 10.1016/j.polymdegradstab.2004.12.012

Google Scholar