Fatigue-Corrosion of High Strength Steels in Synthetic Seawater under Cathodic Protection

Article Preview

Abstract:

The paper is aimed to the study of the corrosion-fatigue behavior of high strength steels for offshore pipelines. Tests have been performed in order to study fatigue crack growth in synthetic seawater under cathodic protection. The tests have been carried out on three different steel grades from 65 to 85 ksi with tempered martensite and ferrite-bainite microstructures. The effect of stress intensity factor, cathodic protection potential and cyclic loading frequency is shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

294-299

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. H. Kang, J. K. Lee, T. W. Kim, Corrosion Fatigue Crack Propagation of High-strength Steel HSB800 in a seawater environment, Procedia Eng. 10 (2011) 1170-1175.

DOI: 10.1016/j.proeng.2011.04.195

Google Scholar

[2] A. Cheng, N. Z. Chen, Corrosion fatigue crack growth modelling for subsea pipeline steels, Ocean Eng. 142 (2017) 10-19.

DOI: 10.1016/j.oceaneng.2017.06.057

Google Scholar

[3] A. Cheng, N. Z. Chen, An extended engineering critical assessment for corrosion fatigue of subsea pipeline steels, Eng. Failure Anal. 84 (2018) 262-275.

DOI: 10.1016/j.engfailanal.2017.11.012

Google Scholar

[4] J. L. Otegui, H. W. Kerr, D. J. Burns, U. H. Mohaupt, Fatigue crack initiation from defects at weld toes in steel, Int. J. Pressure Vessels Piping. 38(5) (1989) 385-417.

DOI: 10.1016/0308-0161(89)90048-3

Google Scholar

[5] M. Madia, B. Schork, J. Bernhard, M. Kaffenberger, Multiple crack initiation and propagation in weldments under fatigue loading, Procedia Structural Integrity. 7 (2017) 423-430.

DOI: 10.1016/j.prostr.2017.11.108

Google Scholar

[6] R. Murakami, W. G. Ferguson, The Effects of Cathodic Potential and Calcareous Deposits on Corrosion Fatigue Crack Growth Rate in Sea Water for Two Offshore Structural Steels, Fatigue Fracture Eng. Mater. Struct. 9(6) (1987) 477-488.

DOI: 10.1111/j.1460-2695.1987.tb00472.x

Google Scholar

[7] M. Knop, J. Heath, Z. Sterjovski, S. P. Lynch, Effects of cycle frequency on corrosion-fatigue crack growth in cathodically protected high-strength steels, Procedia Eng. 2(1) (2010) 1243-1252.

DOI: 10.1016/j.proeng.2010.03.135

Google Scholar

[8] M. Cabrini, S. Lorenzi, T. Pastore, D. P. Bucella, Hydrogen diffusion in low alloy steels under cyclic loading, Corros Rev. 37(5) (2019) 459-467.

DOI: 10.1515/corrrev-2019-0008

Google Scholar

[9] M. Cabrini, T. Pastore, Hydrogen diffusion and EAC of pipeline steels under cathodic protection, Frac. Nano Eng. Mater. Stru. (16th European Conference of Fracture, Alexandropulis, Greece). (2006) 1005-1006.

DOI: 10.1007/1-4020-4972-2_498

Google Scholar

[10] M. Cabrini, S. Lorenzi, P. Marcassoli, T. Pastore, Effect of hydrogen diffusion on environmental assisted cracking of pipeline steels under cathodic protection, La Metallurgia Italiana. 100(2) (2008) 15-22.

Google Scholar

[11] L. Barsanti, F. M. Bolzoni, M. Cabrini, T. Pastore, C. Spinelli, Hydrogen-embrittlement resistance of X100 steels for long-distance high-pressure pipelines, Environ. -Induced Cracking Mater. 2 ( 2008) 291-301.

DOI: 10.1016/b978-008044635-6.50066-2

Google Scholar

[12] M. Cabrini, S. Lorenzi, S. Pellegrini, T. Pastore, Environmentally assisted cracking and hydrogen diffusion in traditional and high-strength pipeline steels, Corr. Rev. 33(6) (2015) 529-545.

DOI: 10.1515/corrrev-2015-0051

Google Scholar

[13] D. Hardie, E. A. Charles, A. H. Lopez, Hydrogen embrittlement of high strength pipeline steels, Corr. Sci. 48(12) (2006) 4378-4385.

DOI: 10.1016/j.corsci.2006.02.011

Google Scholar

[14] T. Zhang, W. Zhao, T. Li, Y. Zhao, Q. Deng, Y. Wang, W. Jiang, Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation, Corr. Sci. 131 (2018) 104-115.

DOI: 10.1016/j.corsci.2017.11.013

Google Scholar

[15] S. Lorenzi, T. Pastore, T. Bellezze, R. Fratesi, Cathodic protection modelling of a propeller shaft, Corr. Sci. 108 (2016) 36-46.

DOI: 10.1016/j.corsci.2016.02.035

Google Scholar

[16] S.A. Shipilov, L. L. May, Structural integrity of aging buried pipelines having cathodic protection, Eng. Failure Anal. 13(7) (2006) 1159-1176.

DOI: 10.1016/j.engfailanal.2005.07.008

Google Scholar

[17] S. Eliassen, New concept for cathodic protection of offshore pipelines to reduce hydrogen induced stress cracking (HISC) in high strength 13%Cr stainless steels, Corr. Eng. Sci. Tech. 39(1) (2004) 31-37.

DOI: 10.1179/147842204225016868

Google Scholar

[18] M. E. Orazem, J. M. Esteban, K. J. Kennelley, R. M. Degerstedt, Mathematical Models for Cathodic Protection of an Underground Pipeline with Coating Holidays: Part 1 Theoretical Development, Corr. Sci. 53(4) (1997) 264-272.

DOI: 10.5006/1.3280467

Google Scholar

[19] B. Bazzoni, S. Lorenzi, P. Marcassoli, T. Pastore, Current and potential distribution modeling for cathodic protection of tank bottoms, Corrosion. 67(2) (2011).

DOI: 10.5006/1.3553930

Google Scholar

[20] G. Demofonti, M. Cabrini, F. Marchesani, C. Spinelli, Eni Tap Project Mechanical Damage and Environmental Assisted Cracking -Full Scale Methodology Overview, John Wiley & Sons. (2008) 611-624.

Google Scholar

[21] A. Punter, A. T. Fikkers, G. Vanstaen, Hydrogen-Induced Stress Corrosion Cracking on a Pipeline, Mater. Perform. 31(6) (1992) 24-28.

Google Scholar

[22] M. Cabrini, G. D'Urso, T. Pastore, Evaluation Of The Resistance To Hydrogen Embrittlement By Slow Bending Test, Environ. -Induced Cracking Mater. 2 (2008) 493-502.

DOI: 10.1016/b978-008044635-6.50085-6

Google Scholar

[23] P. Fassina, F. M. Bolzoni, G. Fumagalli, L. Lazzari, L. Vergani, A. Sciuccati, Influence of hydrogen and low temperature on mechanical behaviour of two pipeline steels, Eng. Fract. Mech. 81 (2012) 43-55.

DOI: 10.1016/j.engfracmech.2011.09.016

Google Scholar

[24] R. Wang, Effects of hydrogen on the fracture toughness of a X70 pipeline steel, Corr. Sci. 51(12) (2009) 2803-2810.

DOI: 10.1016/j.corsci.2009.07.013

Google Scholar

[25] M. Cabrini, E. Sinigaglia, C. M. Spinelli, M. Tarenzi, C. Testa, F. M. Bolzoni, Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of J-Integral Curve, Materials 2019. 12(11) 1843.

DOI: 10.3390/ma12111843

Google Scholar