The Effect of Calcination Temperature on Metakaolin Characteristic Synthesized from Badau Belitung Kaolin

Article Preview

Abstract:

The effect of Metakaolinization on the thermal and physicochemical properties of Badau Belitung kaolin is presented. Calcination of Badau Belitung kaolin indicated that kaolin was transformed to metakaolin at temperature above 500°C. The metakaolin was characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR) and Brunauer-Emmett-Teller (BET). The XRD diffraction pattern of the metakaolin was highly amorphous as a result of calcination effect on the raw kaolin. The FTIR spectra of the metakaolin produced showed that the material was thermally stable at temperature range of 500–700°C, whereas the specific surface area values of the raw kaolin and the metakaolin formed were increased with increasing calcination temperature from 500°C to 700°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

312-316

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Bergaya, G. Lagaly, Chapter 1 General introduction: Clays, clay minerals, and clay science, Develop. Clay Sci. 1 (2006) 1-18.

DOI: 10.1016/s1572-4352(05)01001-9

Google Scholar

[2] M. Murat, A. Amokrane, J. P. Bastide, L. Montanaro, Synthesis of zeolites from thermally acti-vated kaolinite. Some observations on nucleation and growth, Clay Minerals, 27(1) (1992) 119-130.

DOI: 10.1180/claymin.1992.027.1.12

Google Scholar

[3] L. Edomwonyi-Otu, B. O. Aderemi, A. S. Ahmed, N. J. Coville, M. Maaza, Influence of thermal treatment on kankara kaolinite, Opticon. 15 (2013) 51-55.

DOI: 10.5334/opt.bc

Google Scholar

[4] C. Belver, M. A. B. Munoz, M. A. Vicente, Chemical activation of a kaolinite under acid and alkaline conditions, Chem. Mater.14(5) (2002) 2033-2043.

DOI: 10.1021/cm0111736

Google Scholar

[5] M. I. Khan, H. U. Khan, K. Azizli, S. Sufian, Z. Man, A. A. Siyal, N. Muhammad, M. F. Rehman, The pyrolysis kinetics of the conversion of Malaysian kaolin to metakaolin, Appl. Clay Sci. 146 (2017) 152-161.

DOI: 10.1016/j.clay.2017.05.017

Google Scholar

[6] T. H. Dang, B. Chen, D. Lee, Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol, Biores. Tech. 145 (2013) 175-181.

DOI: 10.1016/j.biortech.2012.12.024

Google Scholar

[7] A. Y. Atta, B. Y. Jibril, B. O. Aderemi, S. S. Adefila, Preparation of analcime from local kaolin and rice husk ash, Appl. Clay Sci. 61 (2012) 8-13.

DOI: 10.1016/j.clay.2012.02.018

Google Scholar

[8] A. M. Rashad, Metakaolin as cementitious material: History, sources, production and composition–A comprehensive overview, Constr. Build. Mater. 41 (2013) 303-318.

DOI: 10.1016/j.conbuildmat.2012.12.001

Google Scholar

[9] M. R. Wang, D. C. Jia, P. G. He, Y. Zhou, Influence of calcination temperature of kaolin on the structure and properties of final geopolymer, Mater. Lett. 64(22) (2010) 2551-2554.

DOI: 10.1016/j.matlet.2010.08.007

Google Scholar

[10] H. Wang, C. Li, Z. Peng, S. Zhang, Characterization and thermal behavior of kaolin, J. Therm. Analy. Calorim. 105(1) (2011) 157-160.

DOI: 10.1007/s10973-011-1385-0

Google Scholar

[11] S. Chandrasekhar, P. Raghavan, G. Sebastian, A. D. Damodaran, Brightness improvement studies on kaolin based, zeolite 4A, Appl. Clay Sci. 12(3) (1997) 221-231.

DOI: 10.1016/s0169-1317(97)00008-2

Google Scholar

[12] Z. Zhang, H. Wang, X. Yao, Y. Zhu, Effects of halloysite in kaolin on the formation and properties of geopolymers, Cement Concre. Comp. 34(5) (2012) 709-715.

DOI: 10.1016/j.cemconcomp.2012.02.003

Google Scholar

[13] A. Shvarzman, K. Kovler, G. S. Grader, G. E. Shter, The effect of dehydroxylation/ amorphi-zation degree on pozzolanic activity of kaolinite, Cement Concre. Res. 33(3) (2003) 405-416.

DOI: 10.1016/s0008-8846(02)00975-4

Google Scholar

[14] B. Fabbri, S. Gualtieri, C. Leonardi, Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin, Appl. Clay Sci. 73 (2013) 2-10.

DOI: 10.1016/j.clay.2012.09.019

Google Scholar

[15] B. R. Ilic, A. A. Mitrovic, L. R. Milicic, Thermal treatment of kaolin clay to obtain metakaolin, Hemi. Indus. 64(4) (2010) 351-356.

DOI: 10.2298/hemind100322014i

Google Scholar

[16] Abdullah, et al. Review: Karakterisasi Nanomaterial, J. Nanos. Nanotekno. 2(1) (2009) 1-9.

Google Scholar

[17] N. Salahudeen, Metakaolinization Effect on the Thermal and Physiochemical Properties of Kankara Kaolin, KMUTNB Int. J. Appl. Sci. Technol. 11(2) (2018) 127-135.

DOI: 10.14416/j.ijast.2018.04.003

Google Scholar

[18] A. S Kovo, Development of Zeolites and Zeolite Membranes from Ahoko Nigerian Kaolin, Diss. The Uni. Manchester, UK. (2011).

Google Scholar