[1]
F. Bergaya, G. Lagaly, Chapter 1 General introduction: Clays, clay minerals, and clay science, Develop. Clay Sci. 1 (2006) 1-18.
DOI: 10.1016/s1572-4352(05)01001-9
Google Scholar
[2]
M. Murat, A. Amokrane, J. P. Bastide, L. Montanaro, Synthesis of zeolites from thermally acti-vated kaolinite. Some observations on nucleation and growth, Clay Minerals, 27(1) (1992) 119-130.
DOI: 10.1180/claymin.1992.027.1.12
Google Scholar
[3]
L. Edomwonyi-Otu, B. O. Aderemi, A. S. Ahmed, N. J. Coville, M. Maaza, Influence of thermal treatment on kankara kaolinite, Opticon. 15 (2013) 51-55.
DOI: 10.5334/opt.bc
Google Scholar
[4]
C. Belver, M. A. B. Munoz, M. A. Vicente, Chemical activation of a kaolinite under acid and alkaline conditions, Chem. Mater.14(5) (2002) 2033-2043.
DOI: 10.1021/cm0111736
Google Scholar
[5]
M. I. Khan, H. U. Khan, K. Azizli, S. Sufian, Z. Man, A. A. Siyal, N. Muhammad, M. F. Rehman, The pyrolysis kinetics of the conversion of Malaysian kaolin to metakaolin, Appl. Clay Sci. 146 (2017) 152-161.
DOI: 10.1016/j.clay.2017.05.017
Google Scholar
[6]
T. H. Dang, B. Chen, D. Lee, Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol, Biores. Tech. 145 (2013) 175-181.
DOI: 10.1016/j.biortech.2012.12.024
Google Scholar
[7]
A. Y. Atta, B. Y. Jibril, B. O. Aderemi, S. S. Adefila, Preparation of analcime from local kaolin and rice husk ash, Appl. Clay Sci. 61 (2012) 8-13.
DOI: 10.1016/j.clay.2012.02.018
Google Scholar
[8]
A. M. Rashad, Metakaolin as cementitious material: History, sources, production and composition–A comprehensive overview, Constr. Build. Mater. 41 (2013) 303-318.
DOI: 10.1016/j.conbuildmat.2012.12.001
Google Scholar
[9]
M. R. Wang, D. C. Jia, P. G. He, Y. Zhou, Influence of calcination temperature of kaolin on the structure and properties of final geopolymer, Mater. Lett. 64(22) (2010) 2551-2554.
DOI: 10.1016/j.matlet.2010.08.007
Google Scholar
[10]
H. Wang, C. Li, Z. Peng, S. Zhang, Characterization and thermal behavior of kaolin, J. Therm. Analy. Calorim. 105(1) (2011) 157-160.
DOI: 10.1007/s10973-011-1385-0
Google Scholar
[11]
S. Chandrasekhar, P. Raghavan, G. Sebastian, A. D. Damodaran, Brightness improvement studies on kaolin based, zeolite 4A, Appl. Clay Sci. 12(3) (1997) 221-231.
DOI: 10.1016/s0169-1317(97)00008-2
Google Scholar
[12]
Z. Zhang, H. Wang, X. Yao, Y. Zhu, Effects of halloysite in kaolin on the formation and properties of geopolymers, Cement Concre. Comp. 34(5) (2012) 709-715.
DOI: 10.1016/j.cemconcomp.2012.02.003
Google Scholar
[13]
A. Shvarzman, K. Kovler, G. S. Grader, G. E. Shter, The effect of dehydroxylation/ amorphi-zation degree on pozzolanic activity of kaolinite, Cement Concre. Res. 33(3) (2003) 405-416.
DOI: 10.1016/s0008-8846(02)00975-4
Google Scholar
[14]
B. Fabbri, S. Gualtieri, C. Leonardi, Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin, Appl. Clay Sci. 73 (2013) 2-10.
DOI: 10.1016/j.clay.2012.09.019
Google Scholar
[15]
B. R. Ilic, A. A. Mitrovic, L. R. Milicic, Thermal treatment of kaolin clay to obtain metakaolin, Hemi. Indus. 64(4) (2010) 351-356.
DOI: 10.2298/hemind100322014i
Google Scholar
[16]
Abdullah, et al. Review: Karakterisasi Nanomaterial, J. Nanos. Nanotekno. 2(1) (2009) 1-9.
Google Scholar
[17]
N. Salahudeen, Metakaolinization Effect on the Thermal and Physiochemical Properties of Kankara Kaolin, KMUTNB Int. J. Appl. Sci. Technol. 11(2) (2018) 127-135.
DOI: 10.14416/j.ijast.2018.04.003
Google Scholar
[18]
A. S Kovo, Development of Zeolites and Zeolite Membranes from Ahoko Nigerian Kaolin, Diss. The Uni. Manchester, UK. (2011).
Google Scholar