Evaluation of Mechanical Properties of Sugarcane Reinforced Hybrid Natural Fibre Composites by Conventional Fabrication and Finite Element Method

Article Preview

Abstract:

Natural Fibre composites are being widely used as a replacement to non-bio-degradable polymer composites. The unavailability of proper processes to treat the natural fibres and the errors in fabrication result in less accurate mechanical properties. The accuracy that is obtained by machine-based processes is not possible in Hand layup method, which is employed in fabrication of natural fibre composites. Finite Element method packages which are specially intended in modelling composite structures give more accurate result of properties than experimental setup, by avoiding fabrication errors. This paper evaluates Impact energy and then the tensile strength, flexural strength of a sugarcane fibre GFRP reinforced polymer matrix both by conventional Hand Layup method and also by Finite Element method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-334

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Wirawan, S. M. Sapuan, Sugarcane Bagasse-Filled Poly (Vinyl Chloride) Composites: A Review, Natur. Fiber Reinf. Vinyl. Ester. Vinyl. Polym. Comp. (2018) 157-168.

DOI: 10.1016/b978-0-08-102160-6.00007-x

Google Scholar

[2] G.H. Kumar, H. Babuvishwanath, R. Purohit, P. Sahu, R.S. Rana, Investigations on Mechanical Properties of Glass and Sugarcane Fiber Polymer Matrix Composites, Mater. Today: Proce. 4(4) (2017) 5408-5420.

DOI: 10.1016/j.matpr.2017.05.052

Google Scholar

[3] S. N. Monteiro, V. S. Candido, F. O. Braga, L. T. Bolzan, R. P. Weber, J. W. Drelich, Sugarcane Bagasse Waste in Composites for Multilayered Armor, Europ. Polym. J. 78 (2016) 173-185.

DOI: 10.1016/j.eurpolymj.2016.03.031

Google Scholar

[4] B. V. Ramnath, C Elanchezhian, P. V. Nirmal, G. P. Kumar, V. S. Kumar, S. Karthick, S. Rajesh, K. Suresh, Experimental investigation of mechanical behavior of jute-flax based glass fiber reinforced composite, Fib. Polym. 15(6) (2014) 1251-1262.

DOI: 10.1007/s12221-014-1251-3

Google Scholar

[5] B V. Ramnath, S. Rajesh, C. Elanchezhian, A. S. Shankar, S. P. Pandian, S. Vickneshwaran, R. S. Rajan, Investigation on mechanical behaviour of twisted natural fiber hybrid composite fabricated by vacuum assisted compression molding technique, Fib. Polym. 17(1) (2016) 80-87.

DOI: 10.1007/s12221-016-5276-7

Google Scholar

[6] B. V. Ramnath, R. Sharavanan, M. Chandrasekaran, C. Elanchezhian, R. Sathyanarayanan, R. N. Raja, S. J. Kokan, Experimental determination of mechanical properties of banana jute hybrid composite, Fib. Polym. 16(1) (2015) 164-172.

DOI: 10.1007/s12221-015-0164-0

Google Scholar

[7] H. M. Naguib, U. F. Kandil, A. I. Hashem, Y. M. Boghdadi, Effect of fiber loading on the mechanical and physical properties of green, bagasse-polyester composite, J. Radia. Res Appl Sci. 8(4) (2015) 544-548.

DOI: 10.1016/j.jrras.2015.06.004

Google Scholar

[8] C. Elanchezhian, B. V. Ramnath, G. Ramakrishnan, M. Rajendrakumar, V. Naveenkumar, M. K. Saravanakumar, Review on mechanical properties of natural fiber composites, Mater. Today Proce. 5(1) (2018) 1785-1790.

DOI: 10.1016/j.matpr.2017.11.276

Google Scholar

[9] V.S. Candido, A.C.R. Silva, N.T. Simonassi, F.S. Luz, S. N. Monteiro, Toughness of polyester matrix composites reinforced with sugarcane bagasse fibers evaluated by Charpy impact tests, J. Mater. Res. Tech. 6(4) (2017) 334-338.

DOI: 10.1016/j.jmrt.2017.06.001

Google Scholar

[10] J. Anggono, A. E. Farkas, A. Bartos, J. Móczó, Antoni, H. Purwaningsih, B. Pukánszky, Deformation and failure of sugarcane bagasse reinforced PP, Euro. Polym. J. 112(2019)153-160.

DOI: 10.1016/j.eurpolymj.2018.12.033

Google Scholar

[11] R. M. Rowell, A. R. Sanadi, D. F. Caulfield, R. E. Jacobson, Utilization of natural fibers in plastic composites: Problems and opportunities, Lignocell. Plas. Comp. 13 (1997) 23-51.

Google Scholar

[12] V. Mediavilla, M. Leupin, A. Keller, Influence of the growth stage of industrial hemp on the yield formation in relation to certain fibre quality traits, Indus. Crops Prod. 13(1) (2001) 49-56.

DOI: 10.1016/s0926-6690(00)00052-2

Google Scholar

[13] M. Frías, E. Villar-Cociña, E. Valencia-Morales, Characterization of sugar cane straw waste as pozzolanic material for construction: Calcining temperature and kinetic parameters, Waste Manage. 27(4) (2007) 533-538.

DOI: 10.1016/j.wasman.2006.02.017

Google Scholar

[14] A. Karakoti, P. Tripathy, V.R. Kar, K. Jayakrishnan, M. Rajesh, M. Manikandan, Finite element modeling of natural fiber-based hybrid composites, Model. Dam. Proce. Biocompo, Fib-Reinfo. Comp. Hyb. Comp. (2019) 1-18.

DOI: 10.1016/b978-0-08-102289-4.00001-1

Google Scholar

[15] J. Naveen, M. Jawaid, A. Vasanthanathan, M. Chandrasekar, Finite element analysis of natural fiber-reinforced polymer composites, Model. Dam. Proce. Biocompo, Fib-Reinfo. Comp. Hyb. Comp. (2019) 153-170.

DOI: 10.1016/b978-0-08-102289-4.00009-6

Google Scholar

[16] B. V. Ramnath, et al. A review on CNT reinforced aluminium and magnesium matrix composites, Appl. Mech. Mater. 591 (2014) 120-123.

Google Scholar

[17] B. V. Ramnath, C. Elanchezhian, M. Jaivignesh, S. Rajesh, C. Parswajinan, A. S. A. Ghias, Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites, Mater. Des. 58 (2014) 332-338.

DOI: 10.1016/j.matdes.2014.01.068

Google Scholar

[18] B.V. Ramnath, C. Elanchezhian, R.M. Annamalai, S. Aravind, T.S.A. Atreya, V. Vignesh, C. Subramanian, Aluminium metal matrix composites–a review, Adv. Mater. Sci. 38 (2014) 55-60.

Google Scholar