Investigation of the Tensile and Flexural Behavior of Polylactic Acid Based Jute Fiber Bio Composite

Article Preview

Abstract:

The main objective of this investigation is to reduce and eventually replace the use of non-biodegradable synthetic fiber. Bio composites have shown growth and has been used in the domestic sector, aerospace industry, circuit boards, and automotive applications over the past few years. Many types of natural fibres have been investigated to produce composite materials that are competitive with synthetic fibre composites. Jute is a natural fibre and is 100% bio-degradable and recyclable and thus environmentally friendly. Its properties include high tensile strength, low extensibility. This bio composite specimen has been fabricated with the help of hot press molding machine. The flexural and Tensile tests have been done according to the ASTM standards. The increasing awareness of global environmental and social concern and new environmental regulations have propelled the search for new composites that are compatible with the environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

283-287

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Shukor, A. Hassan, M. S. Islam, M. Mokhtar, M. Hasan, Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites, Mater. Des. 54(1) (2014) 425-429.

DOI: 10.1016/j.matdes.2013.07.095

Google Scholar

[2] L. Petersson, I. Kvien, K. Oksman, Structure and thermal properties of poly(lacticacid)/ cellulose whiskers nanocomposite materials, Compos. Sci. Techno. 67(11-12) (2007) 2535-2544.

DOI: 10.1016/j.compscitech.2006.12.012

Google Scholar

[3] K. Oksman, M. Skrifvars, J. F. Selin, Natural fibres as reinforcement in poly lactic acid (PLA) composites, Compos. Sci. Techno. 63(9) (2003) 1317-1324.

DOI: 10.1016/s0266-3538(03)00103-9

Google Scholar

[4] B. Bax, J. Mussig, Impact and tensile properties of PLA/Cordenka and PLA/flax composites, Compos. Sci. Techno. 68(7-8) (2008) 1601-1607.

DOI: 10.1016/j.compscitech.2008.01.004

Google Scholar

[5] J. Ganster, H. P. Fink, M. Pinnow, High-tenacity man-made cellulose fibre reinforced thermoplastics–injection moulding compounds with polypropylene and alternative matrices, Comp. Part A: Appl. Sci. Manufac. 37(10) (2006) 1796-1804.

DOI: 10.1016/j.compositesa.2005.09.005

Google Scholar

[6] M.A. Sawpan, K.L. Pickering, A. Fernyhough, Hemp fibre reinforced poly (lactic acid) composites, Adv. Mater. Res. 29-30(4) (2007) 337-340.

DOI: 10.4028/www.scientific.net/amr.29-30.337

Google Scholar

[7] S.V. Lomov, A Willems, I. Verpoes, Y. Zhu, M. Barburski, T. Stoilova, Picture frame test of woven composite reinforcements with a full-field strain registration, Text. Res. J. 76(3) (2006) 243-252.

DOI: 10.1177/0040517506061032

Google Scholar

[8] E. Bodros, I. Pillin, N. Montrelay, C. Baley, Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications, Compos. Sci. Tech. 67(3-4) (2007) 462-470.

DOI: 10.1016/j.compscitech.2006.08.024

Google Scholar

[9] E. Nassiopoulos, J. Njuguna, Thermo-mechanical performance of poly (lactic acid)/flax fibre-reinforced biocomposites, Mater. Des. 66(B) (2015) 473-485.

DOI: 10.1016/j.matdes.2014.07.051

Google Scholar

[10] G.W. Beckermann, K.L. Pickering, Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification, Comp Part A: Appl. Sci. Manufa. 39(6) (2008) 979-988.

DOI: 10.1016/j.compositesa.2008.03.010

Google Scholar

[11] M. Bera, R. Alagirusamy, A. Das, A study on interfacial properties of jute-PP composites, J. Reinf. Plast. Compos. 29(20) (2010) 3155-3161.

DOI: 10.1177/0731684410369723

Google Scholar