Tensile Properties of Cellulose-Filled Recycled Thermoplastic Composite Filaments for 3D Printing

Article Preview

Abstract:

In recent years, the growing interest in the development of 3D printing has focused more specifically on the utilization of eco-friendly, biodegradable and recycled materials. This paper presents the effect of the addition of cellulose filler on the tensile properties of filaments used in 3D printing. Cellulose-filled thermoplastic composite filaments were extruded from virgin polylactic acid (PLA), recycled acrylonitrile butadiene styrene (ABS), polystyrene (PS), and polyvinylchloride (PVC), and the effect of cellulose filler on the tensile properties of composite filaments was measured. The results revealed that the tensile properties of recycled thermoplastic filaments weakened remarkably whereas the tensile properties of the filament made of virgin PLA slightly improved. However, despite the differences in the results, it was found that cellulose-filled thermoplastic composite filaments can be produced as feedstock used in 3D printing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-93

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Berman, 3-D printing: The new industrial revolution, Bus. Horiz. 55(2) (2012) 155-162.

Google Scholar

[2] C. Weller, R. Kleer, F. T. Piller, Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited, Int. J. Prod. Econ. 164 (2015) 43-56.

DOI: 10.1016/j.ijpe.2015.02.020

Google Scholar

[3] R. Wimmer, B. Steyrer, J. Woess, T. Koddenberg, N. Mundigler, 3D Printing and Wood, ProLigno. 11 (2015) 144-149.

Google Scholar

[4] T. Campbell, C. Williams, O. Ivanova, B. Garret, Could 3D Printing Change the World? Technologies, Potential, and Implications of Additive Manufacturing, Atl. Counc. Strateg. Foresight Rep. (2011).

Google Scholar

[5] J. W. Stansbury, M. J. Idacavage, 3D printing with polymers: Challenges among expanding options and opportunities, Dent. Mater. 32(1) (2016) 54-64.

DOI: 10.1016/j.dental.2015.09.018

Google Scholar

[6] M. P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, Igarss 2014. (2014).

Google Scholar

[7] F. Ning, W. Cong, J. Qiu, J. Wei, S. Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Compos. Part B Eng. 80 (2015) 369-378.

DOI: 10.1016/j.compositesb.2015.06.013

Google Scholar

[8] N. M. A. Isa, N. Sa'ude, M. Ibrahim, S. M. Hamid, K. Kamarudin, A Study on Melt Flow Index on Copper-ABS for Fused Deposition Modeling (FDM) Feedstock, Appl. Mech. Mater. 773-774 (2015) 8-12.

DOI: 10.4028/www.scientific.net/amm.773-774.8

Google Scholar

[9] A. R. Torrado Perez, D. A. Roberson, R. B. Wicker, Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials, J. Fail. Anal. Prev. 14(3) (2014) 343-353.

DOI: 10.1007/s11668-014-9803-9

Google Scholar

[10] I. Anderson, Mechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid, 3D Print. Addit. Manuf. 4(2) (2017).

DOI: 10.1089/3dp.2016.0054

Google Scholar

[11] B. M. Tymrak, M. Kreiger, J. M. Pearce, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions, Mater. Des. 58 (2014) 242-246.

DOI: 10.1016/j.matdes.2014.02.038

Google Scholar

[12] H. Jiang, D. P. Kamdem, Development of poly(vinyl chloride)/wood composites. A literature review, J. Vinyl Addit. Technol. 10(2) (2004) 59-69.

DOI: 10.1002/vnl.20009

Google Scholar

[13] H. Valkenaers, F. Vogeler, E. Ferraris, A. Voet, J.-P. Kruth, A Novel Approach to Additive Manufacturing: Screw Extrusion 3D-Printing, in: Proc. 10th Int. Conf. Multi-Material Micro Manuf., (2013).

DOI: 10.3850/978-981-07-7247-5-359

Google Scholar

[14] P. Data, A. Us, H. Ome, Properties of Polystyrene, Polym. Database. (2013).

Google Scholar

[15] Z. Weng, J. Wang, T. Senthil, L. Wu, Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing, Mater. Des. 102 (2016) 276-283.

DOI: 10.1016/j.matdes.2016.04.045

Google Scholar

[16] S. Hwang, E. I. Reyes, K. sik Moon, R. C. Rumpf, N. S. Kim, Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process, J. Electron. Mater. 44(3) (2015) 771-777.

DOI: 10.1007/s11664-014-3425-6

Google Scholar

[17] J. Hiller, H. Lipson, Design and analysis of digital materials for physical 3D voxel printing, Rapid Prototyp. J. 15(2) (2009) 137-149.

DOI: 10.1108/13552540910943441

Google Scholar

[18] C. Yang, X. Tian, T. Liu, Y. Cao, D. Li, 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance, Rapid Prototyp. J. 23(1) (2017) 209-215.

DOI: 10.1108/rpj-08-2015-0098

Google Scholar

[19] D. Rejeski, F. Zhao, Y. Huang, Research needs and recommendations on environmental implications of additive manufacturing, Addit. Manuf. 19 (2018) 21-28.

DOI: 10.1016/j.addma.2017.10.019

Google Scholar

[20] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. Part B Eng. 143 (2018) 172-196.

DOI: 10.1016/j.compositesb.2018.02.012

Google Scholar

[21] M. Kariz, M. Sernek, M. Obućina, M. K. Kuzman, Effect of wood content in FDM filament on properties of 3D printed parts, Mater. Today Commun. 14 (2018) 135-140.

DOI: 10.1016/j.mtcomm.2017.12.016

Google Scholar

[22] U. Kalsoom, P. N. Nesterenko, B. Paull, Recent developments in 3D printable composite materials, RSC Adv. 6(65) (2016) 60355-60371.

DOI: 10.1039/c6ra11334f

Google Scholar

[23] T. A. Campbell, O. S. Ivanova, 3D printing of multifunctional nanocomposites, Nano Today. 8(2) (2013) 119-120.

DOI: 10.1016/j.nantod.2012.12.002

Google Scholar

[24] A. A. Klyosov, Wood-Plastic Composites, John Wiley & Sons, (2007).

Google Scholar

[25] R. Malkapuram, V. Kumar, Y. Singh Negi, Recent development in natural fiber reinforced polypropylene composites, J. Reinf. Plast. Compos. 28(10) (2009) 1169-1189.

DOI: 10.1177/0731684407087759

Google Scholar

[26] B. Tisserat, Z. Liu, V. Finkenstadt, B. Lewandowski, S. Ott, L. Reifschneider, 3D printing biocomposites, SPE Plast. Res. Online. (2015).

Google Scholar

[27] R. H. White, M. A. Dietenberger, Wood Products: Thermal Degradation and Fire, Encycl. Mater. Sci. Technol. (2004) 9712-9716.

DOI: 10.1016/b0-08-043152-6/01763-0

Google Scholar

[28] A. N. Shebani, A. J. van Reenen, M. Meincken, The effect of wood extractives on the thermal stability of different wood-LLDPE composites, Thermochim. Acta. 481 (1-2) (2009) 52-56.

DOI: 10.1016/j.tca.2008.10.008

Google Scholar

[29] Y. Tao, H. Wang, Z. Li, P. Li, S. Q. Shi, Development and application ofwood flour-filled polylactic acid composite filament for 3d printing, Materials (Basel). 10(4) (2017).

DOI: 10.3390/ma10040339

Google Scholar

[30] W. Zhong, F. Li, Z. Zhang, L. Song, Z. Li, Short fiber reinforced composites for fused deposition modeling, Mater. Sci. Eng. A. 301(2) (2001) 125-130.

DOI: 10.1016/s0921-5093(00)01810-4

Google Scholar

[31] H. L. Tekinalp, V. Kunc, G. M. Velez-Garcia, C. E. Duty, L. J. Love, A. K. Naskar, C. A. Blue, S. Ozcan, Highly oriented carbon fiber-polymer composites via additive manufacturing, Compos. Sci. Technol. 105 (2014) 144-150.

DOI: 10.1016/j.compscitech.2014.10.009

Google Scholar

[32] J. R. C. Dizon, A. H. Espera, Q. Chen, R. C. Advincula, Mechanical characterization of 3D-printed polymers, Addit. Manuf. 20 (2018) 44-67.

DOI: 10.1016/j.addma.2017.12.002

Google Scholar

[33] X. G. Zhao, K. J. Hwang, D. Lee, T. Kim, N. Kim, Enhanced mechanical properties of self-polymerized polydopamine-coated recycled PLA filament used in 3D printing, Appl. Surf. Sci. 441 (2018) 381-387.

DOI: 10.1016/j.apsusc.2018.01.257

Google Scholar