Progress in Creation of a New Constant Medium for Hyperpolarized MRI

Article Preview

Abstract:

The MRI (Magnetic Resonance Imaging) has been used as one of the powerful tools for medical diagnoses. Its usefulness is, however, still restricted because of the low spatial resolution and long measuring time mainly due to the low NMR (Nuclear Magnetic Resonance) signals relative to the noise levels. To overcome these restrictions, we started developing a method to remarkably enlarge the NMR signals about 10 years ago. We employ a method to hyperpolarize the nuclei, where the “hyperpolarize” means to artificially generate the nuclear polarization by many orders (102~106) of magnitude higher than the ordinary NMR signals currently in use. The hyperpolarized MRI would enable us to provide images with much higher spatial resolution and shorter measuring time than ever. Several techniques for hyperpolarization have been put into practical use; the BF (Brute Force) method, PHIP (Parahydrogen Induced Polarization) method, Laser optical pumping, DNP (Dynamic Nuclear Polarization), and so on. The experimental study on the hyperpolarization of 3He by the BF method, and that of 19F in PFC (Perfluorocarbon, known as an artificial blood) by the PHIP method has gotten started. In the former method, we use an extremely low temperature realized by the Pomeranchuk cooling in combination with 3He/4He dilution refrigerator and high magnetic field. In the latter method, we use the hydrogenation of the parahydrogen in the unsaturated hydrocarbon substrate at room temperature. Very recently, we started developing a novel type of the hyperpolarized MRI named HMM (Hyperpolarized Metabolic MRI) hoping for the cancer diagnosis.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A. B. de González, and S. Darby, The LANCET 363 (2004) 345.

Google Scholar

[2] F. E. Mettler et al., Radiology, 253 (2009) 520.

Google Scholar

[3] D. J. Brenner, and E. J. Hall, New England J. Med.357 (2007) 2277.

Google Scholar

[4] M. Tanaka, T. Kunimatsu, M. Fujiwara, H. Kohri, T. Ohta, M. Yosoi, S. Ono, K. Fukuda, K. Takamatsu, K. Ueda, J. -P. Did´elez, G. Frossati and A. de Waard, J. Conference Series 295 (SPIN2010), 012167, (2011).

DOI: 10.1088/1742-6596/295/1/012167

Google Scholar

[5] M. Tanaka, H. Kohri, T. Ohta, M. Yosoi, M. Fujiwara, K. Ueda, S. Imoto, K. Takamatsu, J. -P. Did´elez, G. Frossati, A. de Waard, Yu. Kiselev, S. Makino, H. Fujimura, K. Fukushima, S. Fukushima, and H. Kondoh, Physics of Particles and Nuclei, 44 959 (2013).

DOI: 10.1134/s106377961306021x

Google Scholar

[6] T. Ohta, M. Fujiwara, K. Fukuda, H. Kohri, T. Kunimatsu, C. Morisaki, S. Ono, M. Tanaka, K. Ueda, M. Uraki, M. Utsuro, S. Y. Wang, M. Yosoi, Nucl. Instr. and Meth. A633 46 (2011).

DOI: 10.1142/9789814313933_0008

Google Scholar

[7] Takeshi Ohta, Hideki Kohri, Masaru Yosoi, Mamoru Fujiwara, Masayoshi Tanaka, 16th Int. Workshop in Polarized Sources, Targets, and Polarimetry, POS (PSTP2015) 020 (2015) 1.

DOI: 10.22323/1.243.0020

Google Scholar

[8] Masayoshi Tanaka, Seiji Makino, Hisako Fujimura, Takeshi Ohta, Masaru Yosoi, Mamoru Fujiwara, Yuto Kasamatsu, Kunihiro Ueda, Gérard Rouillé Giorgio Frossati, and Arlette de Waad, POS (PSTP2015) 045 (2015) 1.

DOI: 10.22323/1.243.0045

Google Scholar

[9] Masayoshi Tanaka, J. Astrophysics and Aerospace Technology 5:2 (Suppl.) 17 (2017).

Google Scholar

[10] Masayoshi Tanaka, Seiji Makino, Hisako Fujimura, Takeshi Ohta, Masaru Yosoi, Mamoru Fujiwara, and Kunihiro Ueda, J. Aerophysics and Aerospace Technology 5:2 (Suppl.) 41 (2017).

Google Scholar

[11] B. Castaing, and P. Nozieeres, J. Phys. 40 257 (1979).

Google Scholar

[12] M. Chapelier, G. Frossati, and F. B. Rasmussen, Phys. Rev. Lett. 42 (1979) 904.

Google Scholar

[13] G. Frossati, ICM proceedings, Münch (1979) 1585 (invited paper).

Google Scholar

[14] M. Chapellier, G. Frossati, F. B. Rasmussen, Proc. XV Int. Congr. Refrigeration, Venice (1979).

Google Scholar

[15] G. A. Vermeulen, S. A. J. Wiegers Rasmussen, C. C. Kranenburg, R. Jochemsen, and G. Frossati, Canadian J. Phys. 65 560 (1987).

Google Scholar

[16] G. Frossati, Nucl. Instr. and Meth.,A 402 479 (1998).

Google Scholar

[17] W. Griffioen, and G. Frossati, Rev. Sci. Instr. 56 1236 (1985).

Google Scholar

[18] T. Theis, Power point file, University of California, Berkeley, Physics 250 04/17/(2008).

Google Scholar

[19] R. W. Adams, J. A. Aguilar, K. D. Atkinson, M. J. Cowley, S.P. I. P. Elliott, S. B. Durckett, G. G. R. Green, I. G. Khazal, J. López-Serrano, and D. C. Williamson, Science 323 (2009) 1708.

Google Scholar

[20] S. J. Nelson, J. Kurhanewicz, D. B. Vigneron, P. E. Z. Larson, A. L. Harzstark, M. Ferrone, M. van Criekinge, J. W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E. J. Small, P. Munster, V. K.Weinberg, J. H. Ardenkjaer-Larsen, A. P. Chen, R. E. Hurd, Liv-Ingrid Odegarstuen, F. J. Robb, J. Tropp, and J. A. Murray, Science Translational Medicine 5 198ra (2013).

DOI: 10.1126/scitranslmed.3006070

Google Scholar

[21] P. M. Richardson, A. J. Parrott, O. Semenova, A. Nordon, S. B. Duckett, and M. E. Halse, Analyst, 143 (2018) 3442.

DOI: 10.1039/c8an00596f

Google Scholar

[22] Bruker Biospin Corp., J. Magnetic Resonance, 261 (2015) 87.

Google Scholar

[23] Kungl. Vetenskps Akademien, The Swedish academy of science, 3 Oct. (2018).

Google Scholar