Surface Plasmon Resonance Signal Amplification Using Secondary Antibody Interaction for Illegal Compound Detection

Article Preview

Abstract:

The development of highly selective and sensitive surface plasmon resonance (SPR) immunoassay for the rapid detection of illegal compound using secondary antibody interaction labelled nanoparticle was conducted. For the construction of SPR sensor surface, the illegal compound (clenbuterol) was immobilized as antigen onto gold succinimide-terminated monolayer to perform amide-coupling reaction. In order to avoid non-specific reaction, the blocking agent (ethanol amine) was injected to the SPR system. Furthermore, indirect competitive inhibition method was employed in the detection of clenbuterol. In this work, the antibody solution (PBS solution containing clenbuterol antibody) premixed with a sample solution (PBS solution containing antigen) before the injection into the sensing system. As the premixed solution flowed over the sensor surface, the SPR senses the dielectric constant change at the interface due to the binding of the unreacted primary antibody to antigen-immobilized on the sensor surface. After this primary antibody detection, secondary antibody was injected to the SPR sensor surface. Here, we compared the signal difference of secondary antibody injection labelled Au nanoparticles (d = 40 nm). For the regeneration of the sensor surface, 0.1 M NaOH was used, so primary and secondary antibodies could be detached from the sensor surface. According to the indirect competitive inhibition method, it was found that the sensitivity for clenbuterol detection was enhanced from 2.5 ppt to 0.07 ppt.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-108

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] KR. Rogers, Anal. Chim. Acta 568 (2006) 222–231.

Google Scholar

[2] S. Rodriguez-mozaz, M-P. Marco, MJL. Alda, Pure Appl. Chem. 76 (2004) 723–752.

Google Scholar

[3] S. Rodriguez-Mozaz, M-P. Marco, MJL. Alda, D. Barceló, Talanta 65 (2005) 291–297.

Google Scholar

[4] M. Sharpe, J. Environ. Monit. 5 (2003) 109–113.

Google Scholar

[5] P. Leonard, S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty, R. O'Kennedy, Enzyme Microb. Technol. 32 (2003) 3–13.

Google Scholar

[6] N. Verma, M. Singh, BioMetals. 18 (2005), 121–129.

Google Scholar

[7] J. Homola, Chem. Rev. 108(2) (2008) 462–493.

Google Scholar

[8] Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, M. Hide, Allergology Int. 62 (2013) 163–169.

DOI: 10.2332/allergolint.12-ra-0505

Google Scholar

[9] J. Mitchell, Sensors 10 (2010) 7323–7346.

Google Scholar

[10] M. Farre, E. Martinez, J. Ramon, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M.P. Marco, D. Barcelo, Anal. Bioanal. Chem. 388 (2007) 207–214.

Google Scholar

[11] X. Lu, H. Zheng, X. Li, X. Yuan, H. Li, L. Deng, H. Zhang, W. Wang, G. Yang, M. Meng, R. Xi, HY. Aboul-Enein, Food Chem. 130 (2012) 1061–1065.

DOI: 10.1016/j.foodchem.2011.07.133

Google Scholar

[12] M. Petz, Monatsh Chem. 140 (2009) 953–964.

Google Scholar

[13] T. Kawaguchi, DR. Shankaran, SJ. Kim, K. Matsumoto, K. Toko, N. Miura, Sens. Actuators B Chem. 133 (2008) 467–472.

Google Scholar

[14] A. Amine, H. Mohammadi, I. Bourais, G. Palleschi, Biosens. Bioelectron. 21 (2006) 1405–1423.

Google Scholar

[15] H. Bai, R. Wang, B. Hargis, H. Lu, Y. Li, Sensors 12 (2012) 12506–12518.

Google Scholar

[16] B. Bohunicky, SA. Mousa, Nanotech. Sci. Appl. 4 (2011) 1–10.

Google Scholar

[17] WL. Shelver and DJ. Smith, J. Agric. Food Chem 52 (2004) 2159−2166.

Google Scholar

[18] G. Fan, J. Huang, X. Fan, S. Xie, Z. Zheng, Q. Cheng, P. Wang, J. Mol. Liq. 169 (2012) 102–105.

Google Scholar

[19] C-C. Wang, C-C. Lu, Y-L. Chen, H-L. Cheng, S-M. Wu, J. Agric. Food Chem.61 (2013) 5914–5920.

Google Scholar

[20] C. Juan, C. Igualada, F. Moragues, N. León, J. Manes, J. Chromatogr. A 1217 (2010) 6061–6068.

Google Scholar

[21] J. Wu, X. Liu, Y. Peng, J. Pharmacol. Toxicol. Methods. 69 (2014) 211–216.

Google Scholar

[22] L. Zheng, P. Thong, X. Zheng, Y. Chi, G. Chen, L. Zhan, J. Sep. Sci. 31(2008) 35563–3564.

Google Scholar

[23] K-C. Lin, C-P. Hong, S-M. Chen, Sens. Actuators B 177 (2012) 428–436.

Google Scholar

[24] S. Suherman, K. Morita, T. Kawaguchi, Appl. Surf. Sci. 332 (2015) 2293–236.

Google Scholar

[25] S. Suherman, K. Morita, T. Kawaguchi, Sens. Actuators B: Chem. 210 (2015) 7683–775.

Google Scholar

[26] SD. Soelberg, RC. Stevens, AP. Limaye, CE. Furlong, Anal Chem. 81 (2009) 2357–2363.

Google Scholar

[27] S. Szunerits, J. Spadavecchia, R. Boukherroub, Rev Anal Chem 33 (2014) 153–164.

Google Scholar

[28] TT. Goodrich, HJ. Lee, RM. Corn, Anal. Chem. 76 (2004) 61733–6178.

Google Scholar

[29] L. Guo, JA. Jackman, H-H. Yang, P. Chen, N-J. Cho, D-H. Kim, Nano Today 10 (2015) 2133–239.

Google Scholar

[30] S. Unser, I. Bruzas, J. He, L. Sagle, Sensors 15 (2015) 15684–15716.

DOI: 10.3390/s150715684

Google Scholar

[31] V. Amendola, OM. Bakr, F. Stellacci, Plasmonics 5 (2010) 85–97.

Google Scholar

[32] J. Krajczewski, K. Kolataj, A. Kudelski, RSC Adv. 7 (2017) 17559–17576.

DOI: 10.1039/c7ra01034f

Google Scholar

[33] J. Jana, M. Ganguli, T. Pal, RSC Adv. 89 (2016) 86174–86211.

Google Scholar

[34] N. Soh, T. Tokudo, T. Watanabe, K. Mishima, T. Imato, T. Masadome, Y. Asano, S. Okutani, O. Niwa, S. Brown, Talanta 60 (2003) 733–745.

DOI: 10.1016/s0039-9140(03)00139-5

Google Scholar

[35] N. Miura, D.R. Shankaran, T. Kawaguchi, K. Matsumoto, K. Toko, Electrochemistry 75 (2007) 13–22.

Google Scholar

[36] S. Suherman, K. Morita, T. Kawaguchi, Biosens. Bioelectron. 67 (2015) 356–363.

Google Scholar