Effect of Space Holder Size on the Porous High Purity Aluminum Property

Article Preview

Abstract:

Porous high purity aluminum was fabricated using a powder metallurgy route combined with the space holder technique. The high purity aluminum powder was mixed with three different particle sizes and contents of the space holder material. The mixed powders were cold compacted at 400 MPa and sintered at 550 °C. The effects of space holder size on the microstructure and mechanical properties of porous high purity aluminum were systematically studied. Results revealed that the size and content of the space holder materials have a significant effect on the mechanical properties of porous aluminium. The compressive strength and hardness of the porous aluminum increased as the size and amount of the space holder material increased and decreased, respectively. The thickness of the cell wall increased with an increase particle size of the space holder material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-98

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Banhart: Prog. Mater. Sci. Vol.46 (2001), p.559–632.

Google Scholar

[2] H. Nakajima T. Hopler, F. Schorghuber, F. Simancık: The 1st International Conference on Metal Foams and Porous Metal Structures (1999), pp.79-82.

Google Scholar

[3] H. Nakajima: Prog. Mater. Sci. Vol.52 (2007), p.1091–1173.

Google Scholar

[4] K. Ota, K. Ohashi, H. Nakajima: Mat Sci Eng AVol. 341(2003), pp.139-143.

Google Scholar

[5] A.E. Simone and L.J. Gibson: Acta Mater Vol.46 (1998), pp.3109-3123.

Google Scholar

[6] L.J. Gibson, M.F. Ashby: Structure and Properties (2nd edn), Cambridge University Press (1997).

Google Scholar

[7] R. W. Rice: J Am Ceram Soc Vol. 59 (1976), pp.536-537.

Google Scholar

[8] B. Jiang, N.Q. Zhao, C.S. Shi, J.J. Li: Scr. Mater Vol. 53 (2005), pp.781-785.

Google Scholar

[9] B. Jiang, Z. Wang and N. Zhao: Scr. Mater Vol. 56 (2007), pp.169-172.

Google Scholar

[10] M. Hakamada, T. Kuromura, Y. Chen, H. Kusuda and M. Mabuchi: Mater Trans Vol. 48 (2007), p.32–36.

Google Scholar

[11] S. Khamsuk A. Joosawat N. Panomtang and K. Wongtimnoi: ICMIM 2017 Conference Series: Mat Sci Eng Vol. 244 (2017).

DOI: 10.1088/1757-899x/244/1/012024

Google Scholar

[12] J.H. Eom and Y.W. Kim: J Ceram Soc Jpn Vol.116 (2008), pp.1159-1163.

Google Scholar

[13] J.L. Xu, L.Z. Bao, A.H. Liu, X.F. Jin, J.M. Luo, Z.C. Zhong and Y.F. Zheng: J Alloy Compd Vol. 645 (2015), p.137–142.

Google Scholar

[14] X.C. Xia, X.W. Chen, Z. Zhang, X. Chen, W.M. Zhao, B. Liao and B. Hur: J Magnes Alloy Vol.1(2013), pp.330-335.

Google Scholar

[15] C.Torres-Sanchez, John McLaughlin, Andrea Fotticchia: J Alloy Compd Vol. 731 (2018), pp.189-199.

Google Scholar

[16] P.G. Karandikar, M. Headinger: Proceeding of America society for composite (1994), pp.538-545.

Google Scholar

[17] N. Michailidis and F. Stergioudi, Mater. Des. Vol 32 (2011), p.1559–1564.

Google Scholar

[18] H. Bafti and A. Habibolahzadeh: Mater. Des. Vol.31 (2010), p.4122–4129.

Google Scholar

[19] T.G. Nieh, J.H. Kinney, and J. Wadsworth: Scripta Mater Vol. 38 (1998), p.1487–1494.

Google Scholar