[1]
V. S. Rao, R. Baligidad, and V. Raja, Effect of Al content on oxidation behaviour of ternary Fe–Al–C alloys,, Intermetallics, vol. 10, pp.73-84, (2002).
DOI: 10.1016/s0966-9795(01)00106-6
Google Scholar
[2]
P. Tortorelli and J. DeVan, Behavior of iron aluminides in oxidizing and oxidizing/sulfldizing environments,, in High Temperature Aluminides and Intermetallics, ed: Elsevier, 1992, pp.573-577.
DOI: 10.1016/b978-1-85166-822-9.50090-x
Google Scholar
[3]
P.N. Materiala, O. Proti, and L. I. Oksidaciji, Investigation on new creep-and oxidation-resistant materials,, Materiali in tehnologije, vol. 49, pp.645-651, (2015).
DOI: 10.17222/mit.2014.210
Google Scholar
[4]
B. Masek, O. Khalaj, H. Jirkova, J. Svoboda, and D. Bublikova, Influence of thermomechanical treatment on the grain-growth behaviour of new Fe-Al based alloys with fine Al2O3 precipitates,, Materiali in Tehnologije, vol. 51, pp.759-768, (2017).
DOI: 10.17222/mit.2016.232
Google Scholar
[5]
M.A. Auger, V. De Castro, T. Leguey, A. Muñoz, and R. Pareja, Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering,, Journal of Nuclear Materials, vol. 436, pp.68-75, (2013).
DOI: 10.1016/j.jnucmat.2013.01.331
Google Scholar
[6]
B. Masek, O. Khalaj, Z. Novy, T. Kubina, H. Jirkova, J. Svoboda, et al., Behaviour of New ODS Alloys under Single and Multiple Deformation,, Materiali in Tehnologije, vol. 50, pp.891-898, (2016).
DOI: 10.17222/mit.2015.156
Google Scholar
[7]
F. Fischer, J. Svoboda, and P. Fratzl, A thermodynamic approach to grain growth and coarsening,, Philosophical Magazine, vol. 83, pp.1075-1093, (2003).
DOI: 10.1080/0141861031000068966
Google Scholar
[8]
O. Khalaj, H. Jirková, B. Mašek, and J. Svoboda, Microstructure Evaluation of New ODS Alloys with Fe-Al Matrix and Al2O3 Particles,, in Proceedings of the 2017 International Conference on Industrial Design Engineering, 2017, pp.11-15.
DOI: 10.1145/3178264.3178273
Google Scholar
[9]
O. Khalaj, H. Jirkova, K. Opatova, and J. Svoboda, Microstructural and Hardness Evolution of New Developed OPH Steels,, presented at the International Conference on Advanced Composite Materials (ICACM 2018), Kuala Lumpur, Malaysia, (2018).
Google Scholar
[10]
O. Khalaj, H. Jirkova, S. Jenicek, A. Racicky, and J. Svoboda, Annealing effects on the microstructure and thermomechanical properties of New-Generation ODS Alloys,, presented at the The 4th International Conference on Smart Materials Technologies (ICSMT 2019), St. Petersburg, Russia, (2019).
DOI: 10.4028/www.scientific.net/kem.834.67
Google Scholar
[11]
J. Farmer, B. El-dasher, J. Ferreira, M. S. d. Caro, and A. Kimura, Coolant Compatibility Studies for Fusion and Fusion-Fission Hybrid Reactor Concepts: Corrosion of Oxide Dispersion Strengthened Iron-Chromium Steels and Tantalum in High Temperature Molten Fluoride Salts,, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States)(2010).
DOI: 10.2172/1126766
Google Scholar
[12]
S. Takaya, T. Furukawa, G. Müller, A. Heinzel, A. Jianu, A. Weisenburger, et al., Al-containing ODS steels with improved corrosion resistance to liquid lead–bismuth,, Journal of Nuclear Materials, vol. 428, pp.125-130, (2012).
DOI: 10.1016/j.jnucmat.2011.06.046
Google Scholar
[13]
H. Sun, H. Yang, M. Wang, B. Giron-Palomares, Z. Zhou, L. Zhang, et al., The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water,, Journal of Nuclear Materials, vol. 484, pp.339-346, (2017).
DOI: 10.1016/j.jnucmat.2016.10.039
Google Scholar
[14]
M. Terada, S. Zschommler, I. Costa, and A. Padilha, The corrosion resistance of Eurofer 97 and ODS-Eurofer steels for nuclear applications,, (2009).
DOI: 10.1007/s10800-011-0320-1
Google Scholar
[15]
J. Svoboda, V. Horník, L. Stratil, H. Hadraba, B. Mašek, O. Khalaj, et al., Microstructure Evolution in ODS Alloys with a High-Volume Fraction of Nano Oxides,, Metals, vol. 8, p.1079, (2018).
DOI: 10.3390/met8121079
Google Scholar
[16]
O. Khalaj, H. Jirková, B. Masek, P. Hassasroudsari, T. Studecký, and J. Svoboda, Using thermomechanical treatments to improve the grain growth of new-generation ODS alloys,, Materiali in tehnologije, vol. 52, pp.475-482, (2018).
DOI: 10.17222/mit.2017.148
Google Scholar
[17]
O. Khalaj, H. Jirková, T. Janda, L. Kucerova, T. Studecký, and J. Svoboda, Improving the High Temperature Properties of a New Generation of Fe-Al-O Oxide Precipitation Hardened Steels,, Materiali in tehnologije, vol. 53, pp.495-504, (2019).
DOI: 10.17222/mit.2018.227
Google Scholar
[18]
E. Saebnoori, T. Shahrabi, S. Sanjabi, M. Ghaffari, and Z. Barber, Surface characteristics and electrochemical behaviour of sputter-deposited NiTi thin film,, Philosophical Magazine, vol. 95, pp.1696-1716, (2015).
DOI: 10.1080/14786435.2015.1043969
Google Scholar
[19]
T. Shahrabi, S. Sanjabi, E. Saebnoori, and Z. Barber, Extremely high pitting resistance of NiTi shape memory alloy thin film in simulated body fluids,, Materials Letters, vol. 62, pp.2791-2794, (2008).
DOI: 10.1016/j.matlet.2008.01.052
Google Scholar