Corrosion Behavior and Mechanical Properties of New Developed Oxide Precipitation Hardened Steels

Article Preview

Abstract:

The Oxide Precipitation Hardened (OPH) steel is a new developed group of materials from Oxide Dispersion Strengthened (ODS) alloys which are well known advanced materials for high temperature properties. Besides, the corrosion resistance of these types of material is so important regarding to their practical usage. The production of OPH alloys, the same as ODS alloys, involves mechanical alloying process to create material with ductile matrix and hard oxide dispersion. Six variants of Fe-Al base OPH steel which developed and manufactured by the authors, were prepared with different chemical composition to evaluate the role of main component on the mechanical properties and corrosion resistance of new-developed OPH steels. The corrosion tests were done using potentiodynamic polarization methods. The results show that the Aluminum content has a main role both on mechanical properties and corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-92

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. S. Rao, R. Baligidad, and V. Raja, Effect of Al content on oxidation behaviour of ternary Fe–Al–C alloys,, Intermetallics, vol. 10, pp.73-84, (2002).

DOI: 10.1016/s0966-9795(01)00106-6

Google Scholar

[2] P. Tortorelli and J. DeVan, Behavior of iron aluminides in oxidizing and oxidizing/sulfldizing environments,, in High Temperature Aluminides and Intermetallics, ed: Elsevier, 1992, pp.573-577.

DOI: 10.1016/b978-1-85166-822-9.50090-x

Google Scholar

[3] P.N. Materiala, O. Proti, and L. I. Oksidaciji, Investigation on new creep-and oxidation-resistant materials,, Materiali in tehnologije, vol. 49, pp.645-651, (2015).

DOI: 10.17222/mit.2014.210

Google Scholar

[4] B. Masek, O. Khalaj, H. Jirkova, J. Svoboda, and D. Bublikova, Influence of thermomechanical treatment on the grain-growth behaviour of new Fe-Al based alloys with fine Al2O3 precipitates,, Materiali in Tehnologije, vol. 51, pp.759-768, (2017).

DOI: 10.17222/mit.2016.232

Google Scholar

[5] M.A. Auger, V. De Castro, T. Leguey, A. Muñoz, and R. Pareja, Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering,, Journal of Nuclear Materials, vol. 436, pp.68-75, (2013).

DOI: 10.1016/j.jnucmat.2013.01.331

Google Scholar

[6] B. Masek, O. Khalaj, Z. Novy, T. Kubina, H. Jirkova, J. Svoboda, et al., Behaviour of New ODS Alloys under Single and Multiple Deformation,, Materiali in Tehnologije, vol. 50, pp.891-898, (2016).

DOI: 10.17222/mit.2015.156

Google Scholar

[7] F. Fischer, J. Svoboda, and P. Fratzl, A thermodynamic approach to grain growth and coarsening,, Philosophical Magazine, vol. 83, pp.1075-1093, (2003).

DOI: 10.1080/0141861031000068966

Google Scholar

[8] O. Khalaj, H. Jirková, B. Mašek, and J. Svoboda, Microstructure Evaluation of New ODS Alloys with Fe-Al Matrix and Al2O3 Particles,, in Proceedings of the 2017 International Conference on Industrial Design Engineering, 2017, pp.11-15.

DOI: 10.1145/3178264.3178273

Google Scholar

[9] O. Khalaj, H. Jirkova, K. Opatova, and J. Svoboda, Microstructural and Hardness Evolution of New Developed OPH Steels,, presented at the International Conference on Advanced Composite Materials (ICACM 2018), Kuala Lumpur, Malaysia, (2018).

Google Scholar

[10] O. Khalaj, H. Jirkova, S. Jenicek, A. Racicky, and J. Svoboda, Annealing effects on the microstructure and thermomechanical properties of New-Generation ODS Alloys,, presented at the The 4th International Conference on Smart Materials Technologies (ICSMT 2019), St. Petersburg, Russia, (2019).

DOI: 10.4028/www.scientific.net/kem.834.67

Google Scholar

[11] J. Farmer, B. El-dasher, J. Ferreira, M. S. d. Caro, and A. Kimura, Coolant Compatibility Studies for Fusion and Fusion-Fission Hybrid Reactor Concepts: Corrosion of Oxide Dispersion Strengthened Iron-Chromium Steels and Tantalum in High Temperature Molten Fluoride Salts,, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States)(2010).

DOI: 10.2172/1126766

Google Scholar

[12] S. Takaya, T. Furukawa, G. Müller, A. Heinzel, A. Jianu, A. Weisenburger, et al., Al-containing ODS steels with improved corrosion resistance to liquid lead–bismuth,, Journal of Nuclear Materials, vol. 428, pp.125-130, (2012).

DOI: 10.1016/j.jnucmat.2011.06.046

Google Scholar

[13] H. Sun, H. Yang, M. Wang, B. Giron-Palomares, Z. Zhou, L. Zhang, et al., The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water,, Journal of Nuclear Materials, vol. 484, pp.339-346, (2017).

DOI: 10.1016/j.jnucmat.2016.10.039

Google Scholar

[14] M. Terada, S. Zschommler, I. Costa, and A. Padilha, The corrosion resistance of Eurofer 97 and ODS-Eurofer steels for nuclear applications,, (2009).

DOI: 10.1007/s10800-011-0320-1

Google Scholar

[15] J. Svoboda, V. Horník, L. Stratil, H. Hadraba, B. Mašek, O. Khalaj, et al., Microstructure Evolution in ODS Alloys with a High-Volume Fraction of Nano Oxides,, Metals, vol. 8, p.1079, (2018).

DOI: 10.3390/met8121079

Google Scholar

[16] O. Khalaj, H. Jirková, B. Masek, P. Hassasroudsari, T. Studecký, and J. Svoboda, Using thermomechanical treatments to improve the grain growth of new-generation ODS alloys,, Materiali in tehnologije, vol. 52, pp.475-482, (2018).

DOI: 10.17222/mit.2017.148

Google Scholar

[17] O. Khalaj, H. Jirková, T. Janda, L. Kucerova, T. Studecký, and J. Svoboda, Improving the High Temperature Properties of a New Generation of Fe-Al-O Oxide Precipitation Hardened Steels,, Materiali in tehnologije, vol. 53, pp.495-504, (2019).

DOI: 10.17222/mit.2018.227

Google Scholar

[18] E. Saebnoori, T. Shahrabi, S. Sanjabi, M. Ghaffari, and Z. Barber, Surface characteristics and electrochemical behaviour of sputter-deposited NiTi thin film,, Philosophical Magazine, vol. 95, pp.1696-1716, (2015).

DOI: 10.1080/14786435.2015.1043969

Google Scholar

[19] T. Shahrabi, S. Sanjabi, E. Saebnoori, and Z. Barber, Extremely high pitting resistance of NiTi shape memory alloy thin film in simulated body fluids,, Materials Letters, vol. 62, pp.2791-2794, (2008).

DOI: 10.1016/j.matlet.2008.01.052

Google Scholar