Thermomagnetic Analysis of the Crystallization in Soft Magnetic Nanocrystalline Alloys

Article Preview

Abstract:

In this work, we investigated the dynamics of nanocrystallization from the amorphous state of the Fe72.5Cu1Nb2Mo1.5Si14B9 alloy together with magnetic phase transformations. The thermomagnetic analysis was performed with the simultaneous recording of the temperature inside the core by a thermocouple and the inductance of the winding wound over the core. It was found that the permeability of the core after the crystallization peak first increases rapidly, and then decreases and stabilizes at some level. Permeability growth begins at a temperature that coincides with the Curie point of the Fe80Si20 solid solution. A decrease in permeability was associated with stabilization of the structure of the amorphous and crystalline phases upon cooling. With decreasing temperature, the active redistribution of chemical elements is suppressed, and silicon atoms occupy a stable position in the crystal lattice of iron. Nanocrystalline cores have different Curie temperatures in the state after the peak of crystallization and 300 seconds after the peak. This indicates the continuation of the diffusion of silicon from the amorphous matrix into Fe-Si nanocrystals for some time after the crystallization peak.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-71

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64 (1988) 6044–6046.

Google Scholar

[2] K.G. Pradeep, G. Herzer, P. Choi, D. Raabe Acta Mater. 68 (2014) 295–309.

Google Scholar

[3] V.S. Tsepelev, Yu.N. Starodubtsev, V.Ya. Belozerov, Phys. Met. Metallogr. 119 (2018) 831–836.

Google Scholar

[4] K. Hono, D.H. Ping, M. Onhuma, H. Onodera, Acta Mater. 47 (1999) 997–1006.

Google Scholar

[5] V.I. Keylin, V.Ya. Belozerov, Yu.N. Starodubtsev, Russian Patent 2009258 (1994).

Google Scholar

[6] V.Ya. Belozerov, Yu.N. Starodubtsev, V.I. Keylin, Russian Patent 2033649 (1995).

Google Scholar

[7] Yu. N. Starodubtsev, V. Ya. Belozerov, MagneticProperties of Amorphous and Nanocrystalline Alloys (Ural University, Ekaterinburg, Russia 2002).

Google Scholar

[8] V. Tsepelev, V. Konashkov, Y. Starodubtsev, V. Belozerov, D. Gaipishevarov, IEEE Trans. Magn. 48 (2012) 1327–1330.

DOI: 10.1109/tmag.2011.2175209

Google Scholar

[9] J.M. Silveyra, V.J. Cremaschi, D. Janičkovič, P. Švec, B. Arcondo, J. Magn. Magn. Mater. 323 (2011) 290–296.

DOI: 10.1016/j.jmmm.2010.09.019

Google Scholar

[10] B.N. Filippov, V.V. Shulika, A.P. Potapov, N.F. Viľdanova, Tech. Phys. 59 (2014) 373–377.

Google Scholar

[11] V. Tsepelev, Yu. Starodubtsev, V. Konashkov, V. Belozerov, J. Alloys Comp. 707 (2017) 210–213.

DOI: 10.1016/j.jallcom.2016.12.345

Google Scholar

[12] G. Gottstein, L.S. Shvindlerman, Grain boundary migration in metals: thermodynamics, kinetics, applications (CRC Press 2010).

DOI: 10.1201/9781420054361

Google Scholar

[13] K. Forsch, phys. stat. sol. 42 (1970) 329 – 344.

Google Scholar

[14] O. Kubaschewski, Iron–binary phase diagrams (Springer–Verlag, Berlin 1982).

Google Scholar

[15] S. Chikazumi, Physics of ferromagnetism (Oxford University Press, New York 1997).

Google Scholar

[16] S. Kaloshkin, M. Churyukanova, V. Zadorozhnyi, I. Shchetinin, J. Alloys Comp. 509S (2011) S400–S403.

DOI: 10.1016/j.jallcom.2011.01.090

Google Scholar