[1]
Błażejewski, W., Gąsior, P., & Kaleta, J. (2011). Application of optical fibre sensors to measuring the mechanical properties of composite materials and structures. In Advances in composite materials-ecodesign and analysis. InTech.
DOI: 10.5772/13954
Google Scholar
[2]
Błażejewski, W., Gąsior, P., Kaleta, J. i Sankowska, A. (2007). Optical fiber sensors integrated with composite material based constructions. Lightguides and Their Applications III, Proc. of SPIE 66081L-1-66081L-10.
DOI: 10.1117/12.739745
Google Scholar
[3]
Deng, L., Luo, R., Qian, X., Ma, J., & Huang, X. (2017). Experimental Study on Concrete Beams Strengthened with Embedded Smart Carbon Fiber Reinforced Plates. DEStech Transactions on Environment, Energy and Earth Sciences, (icnerr).
DOI: 10.12783/dteees/icnerr2017/13291
Google Scholar
[4]
Zhou, Z., Wang, Z., & Shao, L. (2016). Fiber-reinforced polymer-packaged optical fiber Bragg grating strain sensors for infrastructures under harsh environment. Journal of Sensors, (2016).
DOI: 10.1155/2016/3953750
Google Scholar
[5]
Tennyson, R. C., Mufti, A. A., Rizkalla, S., Tadros, G., & Benmokrane, B. (2001). Structural health monitoring of innovative bridges in Canada with fiber optic sensors. Smart materials and Structures, 10(3), 560.
DOI: 10.1088/0964-1726/10/3/320
Google Scholar
[6]
Minakuchi, S., Takeda, N. (2013) Recent Advancement in Optical Fiber Sensing for Aerospace Composite Structures. Photonic Sensors, Vol. 3, No. 4: 345–354.
DOI: 10.1007/s13320-013-0133-4
Google Scholar
[7]
Connolly, C. (2006). Fibre-optic-based sensors bring new capabilities to structural monitoring. Sensor Review, 26(3), 236-243.
DOI: 10.1108/02602280610675537
Google Scholar
[8]
Rafiei, M. H., & Adeli, H. (2017). A novel machine learning‐based algorithm to detect damage in high‐rise building structures. The Structural Design of Tall and Special Buildings, 26(18), e1400.
DOI: 10.1002/tal.1400
Google Scholar
[9]
Seydel R., Chang FK. (2001). Impact identification of stiffened composite panels: I. System developments Smart Mater. Struct. 10 354–69.
DOI: 10.1088/0964-1726/10/2/323
Google Scholar
[10]
Seydel R., Chang FK. (2001). Impact identification of stiffened composite panels: II. Implementation studies Smart Mater. Struct. 10 370–9.
DOI: 10.1088/0964-1726/10/2/324
Google Scholar
[11]
Kang, F., Li, J. J., & Xu, Q. (2012). Damage detection based on improved particle swarm optimization using vibration data. Applied Soft Computing, 12(8), 2329-2335.
DOI: 10.1016/j.asoc.2012.03.050
Google Scholar
[12]
Gres, S., Ulriksen, M. D., Döhler, M., Johansen, R. J., Andersen, P., Damkilde, L., & Nielsen, S. A. (2017). Statistical methods for damage detection applied to civil structures. Procedia engineering, 199, 1919-1924.
DOI: 10.1016/j.proeng.2017.09.280
Google Scholar
[13]
Coverley, P. T., & Staszewski, W. J. (2003). Impact damage location in composite structures using optimized sensor triangulation procedure. Smart materials and structures, 12(5), 795.
DOI: 10.1088/0964-1726/12/5/017
Google Scholar
[14]
Xie, X. F., Zhu, J. F., Song, C. L., Zhang, D. S., & Zou, Q. L. (2013). Mechanical evaluation of three access devices for laparoendoscopic single-site surgery. journal of surgical research, 185(2), 638-644.
DOI: 10.1016/j.jss.2013.07.011
Google Scholar