An Internal Damage Real-Time Monitoring System Using CFRP-OFBG Plates

Article Preview

Abstract:

Composite material brings many challenges in structural health monitoring (SHM), especially in internal damage detecting. CFRP-OFBG, using Optical Fiber Bragg Grating (OFBG) sensors embedded in Carbon Fiber Reinforced Polymer (CFRP) composite structures, has been widely used in the field of structural reinforcement with smart sensing features. This work developed a real-time monitor system to detect internal damage by using dense arrayed fiber-optic sensor embedded in CFRP-OFBG. A classical triangulation procedure is selected and improved in damage location detection algorithm. Experimental results showed this design is an efficient and lightweight system in detecting internal damage for CFRP-OFBG materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-52

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Błażejewski, W., Gąsior, P., & Kaleta, J. (2011). Application of optical fibre sensors to measuring the mechanical properties of composite materials and structures. In Advances in composite materials-ecodesign and analysis. InTech.

DOI: 10.5772/13954

Google Scholar

[2] Błażejewski, W., Gąsior, P., Kaleta, J. i Sankowska, A. (2007). Optical fiber sensors integrated with composite material based constructions. Lightguides and Their Applications III, Proc. of SPIE 66081L-1-66081L-10.

DOI: 10.1117/12.739745

Google Scholar

[3] Deng, L., Luo, R., Qian, X., Ma, J., & Huang, X. (2017). Experimental Study on Concrete Beams Strengthened with Embedded Smart Carbon Fiber Reinforced Plates. DEStech Transactions on Environment, Energy and Earth Sciences, (icnerr).

DOI: 10.12783/dteees/icnerr2017/13291

Google Scholar

[4] Zhou, Z., Wang, Z., & Shao, L. (2016). Fiber-reinforced polymer-packaged optical fiber Bragg grating strain sensors for infrastructures under harsh environment. Journal of Sensors, (2016).

DOI: 10.1155/2016/3953750

Google Scholar

[5] Tennyson, R. C., Mufti, A. A., Rizkalla, S., Tadros, G., & Benmokrane, B. (2001). Structural health monitoring of innovative bridges in Canada with fiber optic sensors. Smart materials and Structures, 10(3), 560.

DOI: 10.1088/0964-1726/10/3/320

Google Scholar

[6] Minakuchi, S., Takeda, N. (2013) Recent Advancement in Optical Fiber Sensing for Aerospace Composite Structures. Photonic Sensors, Vol. 3, No. 4: 345–354.

DOI: 10.1007/s13320-013-0133-4

Google Scholar

[7] Connolly, C. (2006). Fibre-optic-based sensors bring new capabilities to structural monitoring. Sensor Review, 26(3), 236-243.

DOI: 10.1108/02602280610675537

Google Scholar

[8] Rafiei, M. H., & Adeli, H. (2017). A novel machine learning‐based algorithm to detect damage in high‐rise building structures. The Structural Design of Tall and Special Buildings, 26(18), e1400.

DOI: 10.1002/tal.1400

Google Scholar

[9] Seydel R., Chang FK. (2001). Impact identification of stiffened composite panels: I. System developments Smart Mater. Struct. 10 354–69.

DOI: 10.1088/0964-1726/10/2/323

Google Scholar

[10] Seydel R., Chang FK. (2001). Impact identification of stiffened composite panels: II. Implementation studies Smart Mater. Struct. 10 370–9.

DOI: 10.1088/0964-1726/10/2/324

Google Scholar

[11] Kang, F., Li, J. J., & Xu, Q. (2012). Damage detection based on improved particle swarm optimization using vibration data. Applied Soft Computing, 12(8), 2329-2335.

DOI: 10.1016/j.asoc.2012.03.050

Google Scholar

[12] Gres, S., Ulriksen, M. D., Döhler, M., Johansen, R. J., Andersen, P., Damkilde, L., & Nielsen, S. A. (2017). Statistical methods for damage detection applied to civil structures. Procedia engineering, 199, 1919-1924.

DOI: 10.1016/j.proeng.2017.09.280

Google Scholar

[13] Coverley, P. T., & Staszewski, W. J. (2003). Impact damage location in composite structures using optimized sensor triangulation procedure. Smart materials and structures, 12(5), 795.

DOI: 10.1088/0964-1726/12/5/017

Google Scholar

[14] Xie, X. F., Zhu, J. F., Song, C. L., Zhang, D. S., & Zou, Q. L. (2013). Mechanical evaluation of three access devices for laparoendoscopic single-site surgery. journal of surgical research, 185(2), 638-644.

DOI: 10.1016/j.jss.2013.07.011

Google Scholar