[1]
S. Supriadi, B. Suharno, N. K. Nugraha, A. O. Yasinta, and D. Annur, Adhesiveness of TiO2 PVD coating on electropolished stainless steel 17–4 PH orthodontic bracket,, Mater. Res. Express, vol. 6, p.94003, (2019).
DOI: 10.1088/2053-1591/ab2b65
Google Scholar
[2]
A. F. von Recum, Handbook of Biomaterials Evaluation: Scientific, Technical And Clinical Testing Of Implant Materials, 2nd ed. CRC Press, (1998).
Google Scholar
[3]
X. Liu, P. K. Chu, and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications,, Mater. Sci. Eng. R Reports, vol. 47, no. 3–4, p.49–121, (2004).
DOI: 10.1016/j.mser.2004.11.001
Google Scholar
[4]
M. Manjaiah and R. F. Laubscher, Surface engineering of titanium for biomedical applications by anodization,, in International Conference on Competitive Manufacturing, 2006, p.1–5.
Google Scholar
[5]
E. Vermesse, C. Mabru, and L. Arurault, Surface integrity after pickling and anodization of Ti-6Al-4V titanium alloy,, Appl. Surf. Sci., vol. 285 Part B, p.629–637, (2013).
DOI: 10.1016/j.apsusc.2013.08.103
Google Scholar
[6]
N. Qosim, S. Supriadi, A. S. Saragih, and Y. Whulanza, Surface treatments of Ti-alloy based bone implant manufactured by electrical discharge machining,, Ing. y Univ. Eng. Dev., vol. 22, no. 2, p.1–12, (2018).
DOI: 10.11144/javeriana.iyu22-2.sttb
Google Scholar
[7]
N. Qosim, S. Supriadi, P. Puspitasari, and P. Kreshanti, Mechanical Surface Treatments of Ti-6Al-4V Miniplate Implant Manufactured by Electrical Discharge Machining,, Int. J. Eng., vol. 31, no. 7, p.1103–1108, (2018).
DOI: 10.5829/ije.2018.31.07a.14
Google Scholar
[8]
N. Qosim, S. Supriadi, J. Istiyanto, A. S. Saragih, and Y. Whulanza, Surface characteristics of Ti6Al4V-EDM implant engineered by PVD coated-etching and Acidithiobacillus ferrooxidans based-biomachining,, AIP Conf. Proc., vol. 020005, p.5–10, (2018).
DOI: 10.1063/1.5051974
Google Scholar
[9]
L. Salou, A. Hoornaert, G. Louarn, and P. Layrolle, Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits,, Acta Biomater., vol. 11, no. 1, p.494–502, (2015).
DOI: 10.1016/j.actbio.2014.10.017
Google Scholar
[10]
S. Kim, M. Jung, M. Kim, and J. Choi, Bi-functional anodic TiO2 oxide: Nanotubes for wettability control and barrier oxide for uniform coloring,, Appl. Surf. Sci., vol. 407, p.353–360, (2017).
DOI: 10.1016/j.apsusc.2017.02.166
Google Scholar
[11]
H. Shi, Formation mechanism of anodic TiO2 nanotubes,, Adv. Eng. Res., vol. 123, p.785–788, (2017).
Google Scholar
[12]
V. Zwilling, D. David, M. Y. Perrin, and M. Aucouturier, Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy,, Surf. Interface Anal., vol. 27, p.629–637, (1999).
DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0
Google Scholar
[13]
P. Roy, S. Berger, and P. Schmuki, TiO2 Nanotubes: Synthesis and Applications,, Angew. Chemie - Int. Ed., vol. 50, p.2904–2939, (2011).
DOI: 10.1002/anie.201001374
Google Scholar
[14]
D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, and Z. Chen, Titanium oxide nanotube arrays prepared by anodic oxidation,, J. Mater. Res, vol. 16, no. 12, p.3331–3334, (2001).
DOI: 10.1557/jmr.2001.0457
Google Scholar
[15]
K. Indira, U. K. Mudali, T. Nishimura, and N. Rajendran, A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications,, J. Bio- Tribo-Corrosion, vol. 1, no. 28, p.1–22, (2015).
DOI: 10.1007/s40735-015-0024-x
Google Scholar
[16]
K. A. Saharudin, S. Sreekantan, S. N. Q. A. A. Aziz, R. Hazan, and C. W. Lai, Surface Modification and Bioactivity of Anodic Ti6Al4V Alloy,, J. Nanosci. Nanotechnol., vol. 13, no. 3, p.1696–1705, (2013).
DOI: 10.1166/jnn.2013.7115
Google Scholar
[17]
K. S. Brammer, S. Oh, C. J. Cobb, L. M. Bjursten, H. van der Heyde, and S. Jin, Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface,, Acta Biomater., vol. 5, p.3215–3223, (2009).
DOI: 10.1016/j.actbio.2009.05.008
Google Scholar