Structural Investigations on Hydrothermally Grown ZnO Nanostructures

Article Preview

Abstract:

This study investigates the influence of aqueous solution molarity on the structural characteristics of zinc oxide (ZnO) grown by hydrothermal method. From the X-ray diffraction (XRD) patterns of the ZnO nanostructures, the diffraction peaks confirm the ZnO hexagonal wurtzite type crystalline structure. To investigate the structural properties of ZnO structures in more detail, we analyze the XRD line profiles of the samples by Warren-Averbach model. Based on the model, the diffraction intensity of the XRD is calculated in Fourier space and the information on the size distribution can be derived. Observing the calculated nanostructure size distribution of the samples, we can see that the breadth of the size distribution function decreases then increases with increasing molarities. Furthermore, the theoretical analyzed results are verified by photoluminescence (PL) measurements and the scanning electron microscope (SEM) images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-13

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Wei, L. Pan, and W. Huang: Mater. Sci. Eng. B. Vol. 176 (2011), p.1409.

Google Scholar

[2] F. Lu, W. Cai, and Y. Zhang: Adv. Funct. Mater. Vol. 18 (2008), p.1047.

Google Scholar

[3] J.Z. Wang, E. Elamurugu, H.T. Li, S.J. Jiao, L.C. Zhao, R. Martins, and E. Fortunato: Adv. Mater. Res. Vol. 645 (2013), p.64.

Google Scholar

[4] L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang: Sens. Actuators B: Chem. Vol. 162 (2012), p.237.

Google Scholar

[5] N. H. Alvi, K. Hasan, O. Nur, and M. Willander: Nanoscale Res. Lett. Vol. 6 (2011), p.130.

Google Scholar

[6] J.Y. Park, D.J. Lee, Y.S. Yun, J.H. Moon, B.T. Lee, and S.S. Kim: J. Cryst. Growth Vol. 276 (2005), p.158.

Google Scholar

[7] S. Lin, H. Hu, W. Zheng, Y. Qu, and F. Lai: Nanoscale Res. Lett. Vol. 8 (2013), p.158.

Google Scholar

[8] S. Al-lami, and H. Jaber: Chem. Mater. Res. Vol. 6 (2014), p.101.

Google Scholar

[9] S. Baruah, and J. Dutta: Sci. Technol. Adv. Mater. Vol. 10 (2009), p.013001.

Google Scholar

[10] X.X. Zhang, D. Zhao, M. Gao, H.B. Dong, W.Y. Zhou, and S.S. Xie: Nanotechnology Vol. 22 (2011), p.135603.

Google Scholar

[11] S.H. Jeong, and E.S. Aydil: J. Cryst. Growth Vol. 311 (2009), p.4188.

Google Scholar

[12] N. Huang, M.W. Zhu, L.J. Gao, J. Gong, C. Sun, and X. Jiang: Appl. Surf. Sci. Vo; 257 (2011), p.6026.

Google Scholar

[13] A. Ismail, and M.J. Abdullah: J. King Saud Univ. Sci. Vol. 25 (2013), p.209.

Google Scholar

[14] X. Zhao, J.Y. Lee, C.R. Kim, J. Heo, C.M. Shin, J.Y. Leem, H. Ryu, J.H. Chang, H.C. Lee, W.G. Jung, C.S. Son, B.C. Shin, W.J. Lee, S.T. Tan, J. Zhao, and X. Sun: Physica E Vol. 41 (2009), p.1423.

DOI: 10.1016/j.physe.2009.04.012

Google Scholar

[15] B.R. Kumar and B. Hymavathi: J. Asian Ceram. Soc. Vol. 5 (2017), p.94.

Google Scholar

[16] A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi: Solid State Sci. Vol. 13 (2011), p.251.

Google Scholar

[17] B.E. Warren, and B.L. Averbach: J. Appl. Phys. Vol. 21 (1950), p.595.

Google Scholar

[18] B.E. Warren: X-ray diffraction (Dover, New York, 1990).

Google Scholar

[19] J.C. Lee, Y.F. Wu, T.E. Nee, and J.C. Wang: IEEE. T. Nanotechnol. Vol. 10 (2011), p.827.

Google Scholar

[20] S. Mahadevan, S.P. Behera, G. Gnanaprakash, T.Jayakumar, J. Philip, and B.P.C. Rao: J. Phys. Chem. Solids Vol. 73 (2012), p.867.

Google Scholar