[1]
D.G. Cahill et al., Nanoscale thermal transport, Journal of Applied Physics. 93 (2003) 793-818.
Google Scholar
[2]
D.G. Cahill et al., Nanoscale thermal transport II, Journal of Applied Physics. 1 (2014).
Google Scholar
[3]
G. Chen, Nanoscale energy transport and conversion, Oxford University Press, (2005).
Google Scholar
[4]
Y. Zeng, Y. Liu and W. Zhou, Nanoscale thermal transport: Theoretical method and application, Chinese Physics B. 27 (2018).
Google Scholar
[5]
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical Review. 136 (1964) 793-818.
Google Scholar
[6]
W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review. 23 (1985) 185-200.
Google Scholar
[7]
A. Jain and A.J.H. McGaughey, Effect of exchange-correlation on first-principles-driven lattice thermal conductivity predictions of crystalline silicon, Computational Material Science. 110 (2015) 115-120.
DOI: 10.1016/j.commatsci.2015.08.014
Google Scholar
[8]
D.A. Broido et al., Intrinsic lattice thermal conductivity of semiconductors from first principles, Applied Physics Letters. 91 (2007) 23-25.
DOI: 10.1063/1.2822891
Google Scholar
[9]
K. Esfarjaniand and H.T. Stokes, Method to extract anharmonic force constants from first principles calculations, Physical review B. 77 (2008) 1-7.
DOI: 10.1103/physrevb.77.144112
Google Scholar
[10]
T. Tadano, Y. Gohda and S. Tsuneyuki, Anharmonic force constants extracted from first-principles molecular dynamics: Applications to heat transfer simulations, Journal of Physics Condensed Matter. 26 (2014).
DOI: 10.1088/0953-8984/26/22/225402
Google Scholar
[11]
A. Togo, L. Chaputand and I. Tanaka, Distribution of phonon lifetime in Brillouin zone, Physical review B. 91 (2015) 1-36.
Google Scholar
[12]
X. Gonze and J.P. Vigneron, Density-functional approach to nonlinear-response coefficients of solids, Physical Review B. 39 (1989) 293-303.
DOI: 10.1103/physrevb.39.13120
Google Scholar
[13]
K. Parlinski, Z.Q. Li and Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2, Physical Review Letters. 78 (1997) 4063-4066.
DOI: 10.1103/physrevlett.78.4063
Google Scholar
[14]
Y. Wang et al., A mixed-space approach to first-principles calculation of phonon frequencies for polar materials, Journal of Physics Condensed Matter. 22 (2010).
Google Scholar
[15]
K. Kunc and R.M. Martin, Ab initio force constants of GaAs: A new approach to calculation of phonons and dielectric properties, Physical Review Letters. 48 (1982).
DOI: 10.1103/physrevlett.48.406
Google Scholar
[16]
S. Volz, J. Shiomi, M Nomura and K. Miyazaki, Heat conduction in nanostructured materials, Journal of Thermal Science and Technology. 11 (2016) 1-15.
DOI: 10.1299/jtst.2016jtst0001
Google Scholar
[17]
T. Tadano and S. Tsuneyuki, Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants, Physical Review B. 92 (2015) 1-11.
DOI: 10.1103/physrevb.92.054301
Google Scholar
[18]
T. Tadano and S. Tsuneyuki, First-principles lattice dynamics method for strongly anharmonic crystals, Journal of the Physical Society of Japan. 87 (2018).
DOI: 10.7566/jpsj.87.041015
Google Scholar
[19]
A.N. Ward, First principles theory of the lattice thermal conductivity of semiconductors, Boston College University Libraries, Boston, (2009).
Google Scholar
[20]
J.M. Ziman, Electrons and phonons: The theory of transport phenomenon in solids, Clarendon Press, (1960).
Google Scholar
[21]
J. Callaway, Model for lattice thermal conductivity at low temperatures, Physical Review. 113 (1959) 1046–1051.
DOI: 10.1103/physrev.113.1046
Google Scholar
[22]
M. Omini and A. Sparavigna. An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity, Physical B. 212 (1995) 101-112.
DOI: 10.1016/0921-4526(95)00016-3
Google Scholar
[23]
M. Omini and A. Sparavigna, Heat transport in dielectric solids with diamond structure, Nuovo Cimento D. 19 (1997) 1537-1564.
Google Scholar
[24]
M. Omini and A. Sparavigna, Beyond the isotropic-model approximation in the theory of thermal conductivity, Physical Review B. 53 (1996) 9064-9073.
DOI: 10.1103/physrevb.53.9064
Google Scholar
[25]
A. Ward et al., Ab initio theory of the lattice thermal conductivity in diamond, Physical Review B. 80 (2009) 1-8.
Google Scholar
[26]
W.X. Li et al., Phonon transport and thermal conductivity in dielectric quantum wire, Journal of Physics D: Applied Physics. 36 (2003).
Google Scholar
[27]
J.S. Wang, J. Wang and N. Zeng, Non-equilibrium Green's function approach to mesoscopic thermal transport, Physical Review B. 74 (2006) 1-4.
Google Scholar
[28]
S.G. Volz and G. Chen, Molecular dynamics simulation of thermal conductivity of silicon nanowires, Applied Physics Letter. 75 (1999) 2056-2058.
DOI: 10.1063/1.124914
Google Scholar
[29]
P.K. Shelling, S.R. Phillpot and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Physical Review B. 65 (2002) 1-12.
DOI: 10.1103/physrevb.65.144306
Google Scholar
[30]
K. Esfarjani, G. Chen and H.T. Stokes, Heat transport in silicon from first-principles calculations, Physical Review B. 84 (2011) 1-11.
DOI: 10.1103/physrevb.84.085204
Google Scholar
[31]
C. Sion and C.H. Hsu, Study of an iterative solution for Boltzmann transport equation and calculation of thermal conductivity, Key Engineering Materials. 777 (2018) 421-425.
DOI: 10.4028/www.scientific.net/kem.777.421
Google Scholar
[32]
F. Eriksson, An efficient approach for extracting anharmonic force constants from atomistic simulations, Chalmers University of Technology, Gothenburg, Sweden, (2017).
Google Scholar
[33]
P. Giannozzi et al., Quantum espresso: A modular and open-source software project for quantum simulations of materials, Journal of Physics Condensed Matter. 21 (2009).
Google Scholar
[34]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B. 59 (1993) 1758-1775.
DOI: 10.1103/physrevb.59.1758
Google Scholar
[35]
A. Togo and I. Tanaka, First principles phonon calculations in material sciences, Scripta Materialia. 108 (2015) 1-5.
DOI: 10.1016/j.scriptamat.2015.07.021
Google Scholar
[36]
W. Li et al., ShengBTE: A solver of the Boltzmann transport equation for phonons, Computer Physics Communications. 185 (2014) 1747-1758.
DOI: 10.1016/j.cpc.2014.02.015
Google Scholar