Iron/Sulfur Co-Doped Titanium Dioxide Nanotubes: Optimization of the Photoelectrocatalytic Degradation of Phenol Red under Visible Light

Article Preview

Abstract:

Photoelectrocatalysis is a rapidly developing technology for degrading recalcitrant organic compounds in wastewater due to its ability to overcome electron-hole recombination. Herein, we synthesized Fe/S co-doped TiO2 nanotubes through an in-situ anodization technique. We developed a simple reduced quadratic model based on response surface modeling which can be used to adequately correlate the operating parameters with the photoelectrocatalytic performance of Fe/S-TiNTs in degrading phenol red. Predicted maximum dye degradation of 54.78% was achieved by the generated model using the optimized parameters: initial phenol red concentration = 5.22 mg L-1, applied voltage = 27.4 V, and dopant loading = 2.97 wt.%. Upon validation, experimental maximum phenol degradation of 53.24% was obtained, which agrees well with the predicted value within statistical significance. Overall, our model can be potentially used for process optimization within the design space studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-101

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: Recent advances and applications, Catalysts. 3 (2013) 189–218.

DOI: 10.3390/catal3010189

Google Scholar

[2] I. Ganesh, P. Kumar, A. Gupta, P. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications, Process. Appl. Ceram. 6 (2012) 21–36.

DOI: 10.2298/pac1201021g

Google Scholar

[3] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: Mechanisms and materials, Chem. Rev. 114 (2014) 9919–9986.

DOI: 10.1021/cr5001892

Google Scholar

[4] G.D. Lakshmipathi Naik, N. Kottam, G.K. Shivashankar, Photo catalytic degradation of azo dyes over Mn 2+ doped TiO 2 catalyst under UV/solar light: An insight to the route of electron transfer in the mixed phase of anatase and rutile, Chinese J. Chem. 28 (2010) 2151–2161.

DOI: 10.1002/cjoc.201090356

Google Scholar

[5] X. Kang, S. Liu, Z. Dai, Y. He, X. Song, Z. Tan, Titanium dioxide: From engineering to applications, (2019).

Google Scholar

[6] H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J. Photochem. Photobiol. C Photochem. Rev. 15 (2013) 1–20.

Google Scholar

[7] Q. Wang, R. Jin, M. Zhang, S. Gao, Solvothermal preparation of Fe-doped TiO2nanotube arrays for enhancement in visible light induced photoelectrochemical performance, J. Alloys Compd. 690 (2017) 139–144.

DOI: 10.1016/j.jallcom.2016.07.281

Google Scholar

[8] J.C. Te Lin, K. Sopajaree, T. Jitjanesuwan, M.C. Lu, Application of visible light on copper-doped titanium dioxide catalyzing degradation of chlorophenols, Sep. Purif. Technol. 191 (2018) 233–243.

DOI: 10.1016/j.seppur.2017.09.027

Google Scholar

[9] Z. Zhou, H. Wang, Z. Zou, M. Du, J. Guo, Z. Yang, Investigations on the origin of ferromagnetism of Cu doped anatase TiO2 nanotubes, Mater. Res. Bull. 86 (2017) 287–294.

DOI: 10.1016/j.materresbull.2016.09.034

Google Scholar

[10] M.C. Nevárez-Martínez, M.P. Kobylanski, P. Mazierski, J. Wółkiewicz, G. Trykowski, A. Malankowska, M. Kozak, P.J. Espinoza-Montero, A. Zaleska-Medynska, Self-Organized TiO2-MnO2 nanotube arrays for efficient photocatalytic degradation of toluene, Molecules. 22 (2017) 564.

DOI: 10.3390/molecules22040564

Google Scholar

[11] V.D. Binas, K. Sambani, T. Maggos, A. Katsanaki, G. Kiriakidis, Synthesis and photocatalytic activity of Mn-doped TiO 2 nanostructured powders under UV and visible light, Appl. Catal. B Environ. 113–114 (2012) 79–86.

DOI: 10.1016/j.apcatb.2011.11.021

Google Scholar

[12] M. Manzoor, A. Rafiq, M. Ikram, M. Nafees, S. Ali, Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol–gel method, Int. Nano Lett. 8 (2018) 1–8.

DOI: 10.1007/s40089-018-0225-7

Google Scholar

[13] P. Singla, O.P. Pandey, K. Singh, Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles, Int. J. Environ. Sci. Technol. 13 (2016) 849–856.

DOI: 10.1007/s13762-015-0909-8

Google Scholar

[14] H.L. Hoşgün, M.T.A. Aydın, Synthesis, characterization and photocatalytic activity of boron-doped titanium dioxide nanotubes, J. Mol. Struct. 1180 (2019) 676–682.

DOI: 10.1016/j.molstruc.2018.12.056

Google Scholar

[15] S. Singh Surah, M. Vishwakarma, R. Kumar, R. Nain, S. Sirohi, G. Kumar, Tuning the electronic band alignment properties of TiO 2 nanotubes by boron doping, Results Phys. 12 (2019) 1725–1731.

DOI: 10.1016/j.rinp.2019.01.081

Google Scholar

[16] G. Cinelli, F. Cuomo, L. Ambrosone, M. Colella, A. Ceglie, F. Venditti, F. Lopez, Photocatalytic degradation of a model textile dye using Carbon-doped titanium dioxide and visible light, J. Water Process Eng. 20 (2017) 71–77.

DOI: 10.1016/j.jwpe.2017.09.014

Google Scholar

[17] Z. Jedi-Soltanabadi, M. Ghoranneviss, Z. Ghorannevis, H. Akbari, Anodic growth of Nitrogen-doped Titanium dioxide nanotubes by anodization process of elemental Titanium in ethylene glycol based electrolyte solution with different water contents, Vacuum. 155 (2018) 387–390.

DOI: 10.1016/j.vacuum.2018.06.027

Google Scholar

[18] N.S. Peighambardoust, S. Khameneh Asl, R. Mohammadpour, S.K. Asl, Band-gap narrowing and electrochemical properties in N-doped and reduced anodic TiO 2 nanotube arrays, Electrochim. Acta. 270 (2018) 245–255.

DOI: 10.1016/j.electacta.2018.03.091

Google Scholar

[19] M.S. Mahmoud, M.S. Akhtar, I.M.A. Mohamed, R. Hamdan, Y.A. Dakka, N.A.M. Barakat, Demonstrated photons to electron activity of S-doped TiO2 nanofibers as photoanode in the DSSC, Mater. Lett. 225 (2018) 77–81.

DOI: 10.1016/j.matlet.2018.04.108

Google Scholar

[20] S.A. Bakar, C. Ribeiro, A comparative run for visible-light-driven photocatalytic activity of anionic and cationic S-doped TiO2 photocatalysts: A case study of possible sulfur doping through chemical protocol, J. Mol. Catal. A Chem. 421 (2016) 1–15.

DOI: 10.1016/j.molcata.2016.05.003

Google Scholar

[21] N. Chauhan, V. Singh, S. Kumar, M. Kumari, K. Sirohi, Synthesis of nitrogen & palladium co-doped mesoporous titanium dioxide nanoparticles via evaporation induced self assembly method and study of their photocatalytic properties, J. Mol. Struct. 1185 (2019) 219–228.

DOI: 10.1016/j.molstruc.2019.02.055

Google Scholar

[22] M.S. Stan, M.A. Badea, G.G. Pircalabioru, M.C. Chifiriuc, L. Diamandescu, I. Dumitrescu, B. Trica, C. Lambert, A. Dinischiotu, Designing cotton fibers impregnated with photocatalytic graphene oxide/Fe, N-doped TiO 2 particles as prospective industrial self-cleaning and biocompatible textiles, Mater. Sci. Eng. C. 94 (2019) 318–332.

DOI: 10.1016/j.msec.2018.09.046

Google Scholar

[23] E.C.R. Lopez, V.A.F. Cleofe, R.Y.A. Cañal, K.F.P. Boado, J.V.D. Perez, Highly-Organized One-Dimensional Copper-Doped Titanium Dioxide Nanotubes for Photoelectrocatalytic Degradation of Acid Orange 52, Key Eng. Mater. 801 (2019) 285–291.

DOI: 10.4028/www.scientific.net/kem.801.285

Google Scholar