Characterization of Slate Powder Wastes from Minas Gerais - Brazil

Article Preview

Abstract:

Research and development related to the processing of recycled materials has grown progressively in recent times, as scientists endeavour to integrate sustainability criteria, depletion of natural resources, reducing the energy of technological processes involving extraction and processing of raw materials, etc. When it comes to processing slate, industries have to pass over several steps ranging from the extraction of rock blocks until the final products consisting of plates, leaving behind a considerable amount of waste in the form of a mud composed mainly of water, lubricants and crushed rock. This waste with no defined destination accumulates in yards, reservoirs and streams, affecting the environment. Slate powder has great prospects for recovery, recycling and further applications once it has chemical composition and components similar to raw materials used in ceramic and building construction industries. Therefore, a complete characterization of this powder is important and here we present some results of XRD, SEM, EDS, G3 morphology and thermal analysis of slate powder samples from the southeastern state of Minas Gerais in Brazil.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-19

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. E. Oti, J. M. Kinuthia, J. Bai, Unfired clay masonry bricks incorporating slate waste, Waste and Recourse Management. 163 (2010) 17-27.

DOI: 10.1680/warm.2010.163.1.17

Google Scholar

[2] M. Frias, R. Vigil de la Villa, R. Garcia, I. de Soto, C. Medina, M. I. Sanchez de Rojas, Scientific and technical aspects of blended cement matrices containing activated slate wastes. 48 (2014) 19-25.

DOI: 10.1016/j.cemconcomp.2014.01.002

Google Scholar

[3] L. B. Palhares. Estudo da estabilidade e comportamento de suspensões aquosas de pó de ardósia para aplicação em processamento cerâmico. Tese (Doutorado em Engenharia de Materiais), Ouro Preto, (2017).

Google Scholar

[4] R. L. Bates and J. A. Jackson, Glossary of Geology, 3rd edn. Am. Geol. Inst, (1987).

Google Scholar

[5] M. Campos, F. Velasco, M. A. Martinez, J. M. Torralba, Recovered slate waste as raw material for manufacturing sintered structural tiles, J. Eur. Cer. Soc 24 (2004) 811-819.

DOI: 10.1016/s0955-2219(03)00325-x

Google Scholar

[6] G. Barluenga, F. Hernandez-Olivares, Self-levelling cement mortar containing grounded slate from quarrying waste. 24 (2010) 1601-1607.

DOI: 10.1016/j.conbuildmat.2010.02.033

Google Scholar

[7] L.B. Palhares, H.S. Mansur, Production and characterization of ceramic pieces obtained by slip casting using powder wastes. J. Mat. Proc. Tech., 145 (2004) 14-20.

DOI: 10.1016/s0924-0136(03)00857-4

Google Scholar

[8] C. Chiodi Filho, E. P. Rodrigues, A.C. Artur, Ardósias de Minas Gerais, Brasil: Características Geológicas, Petrográficas e Químicas. Rev. Geoc., 22 (2) (2003) 119-127.

Google Scholar

[9] ABIROCHAS – Associação Brasileira da Indústria de Rochas Ornamentais. Estimativa da Serragem de Chapas de Rochas Ornamentais no Brasil. (2017).

DOI: 10.11606/d.18.2015.tde-16112015-092931

Google Scholar

[10] L.B. Palhares, K. G. Dornas, G. de B. Praxedes, J. M. J. Sather, Development and Characterization of bricks using slate powder waste. In: X Brazilian MRS Meeting, Brazil, (2011).

Google Scholar

[11] L.B. Palhares, H.S. Mansur, C. dos Santos, V. Oliveira, Microstructure evaluation of slate pieces submitted to heat treatment at different temperatures. In: 44th World Chemistry Congress, Istanbul, (2013).

Google Scholar

[12] L. Catarino, et.al., Ceramic Products Obtained from Rock Wastes. J. Mat. Proc. Tech. 143-144 (2003) 843-845.

DOI: 10.1016/s0924-0136(03)00341-8

Google Scholar

[13] L.E.F. Cambronero, J.M. Ruiz-Roman, J.M. Ruiz-Pietro, Obtentión de espumas a partir de resíduos de pizarra. Bol. de La Soc. Esp. Cer. y Vid., 44 (6) (2005) 368-372.

DOI: 10.3989/cyv.2005.v44.i6.330

Google Scholar

[14] M.E.M.C. Silva, A.E.C. Peres, Thermal expansion of slate wastes. Min. Eng. 19 (2006) 518-520.

DOI: 10.1016/j.mineng.2005.10.008

Google Scholar

[15] J.E. Oti, J. M. Kinuthia, J. Bai, D. G. Snelson, Applications of slate waste material in the UK, Waste and Recourse Management. 163 (2010) 19-15.

DOI: 10.1680/warm.2010.163.1.9

Google Scholar

[16] M. Dondi, et.al. Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating. Cons. Buil. Mat. 127 (1016) 394-409.

DOI: 10.1016/j.conbuildmat.2016.09.111

Google Scholar

[17] L. Zhen, et.al. Manufacturing of ultra-light ceramsite from slate wastes in Shangri-la, China. J. of the Kor. Cer. Soc. 55 (2018) 36-43.

DOI: 10.4191/kcers.2018.55.1.02

Google Scholar

[18] M.T. Vieira, et.al., Optimization of the sintering process of raw material wastes. J. Mat. Proc. Tech., 92-93 (1999) 97-101.

Google Scholar

[19] P.L. et.al., Reactividad álcali-sílice y álcali-silicato en pizarras. Est. Geol., 66 (2010) 91-98.

DOI: 10.3989/egeol.40143.094

Google Scholar

[20] C.Ward, F. Gomez-Fernandez, Quantitative mineralogical analysis of spanish roofing slates using the Rietveld method and X-ray powder diffration data. E. J. Of Mineralogy, 15 (2003) 1051-1062.

DOI: 10.1127/0935-1221/2003/0015-1051

Google Scholar