Magneto-Transport Properties in LaMnO3 Thin Films on a-SiO2 Substrates Produced by Metal Organic Decomposition Method

Article Preview

Abstract:

We have studied the magneto-transport properties in LMO thin films on a-SiO2 substrates produced by the metal organic decomposition (MOD) method. LMO thin films have been prepared by the MOD method in the 100 % O2 gas atmosphere on different heat treatment conditions. Although LMO single crystal is an antiferromagnetic insulator, LMO thin films we have produced in the 100 % O2 gas atmosphere by use of the MOD method shows the ferromagnetic metal properties for suitable heat treatment conditions. We consider that the excess of O2- ions in LMO thin films produced in the 100 % O2 gas atmosphere induces the strong hole self-doping into those and changes to ferromagnetic metal. The quantity of excess O2- ions in LMO is sensitive to the heat treatment conditions of the LMO production, especially the temperature, time and atmosphere gas. We have obtained the coercive forces from the magnetic field dependence of magnetoresistance. Based on the temperature dependence of the coercive forces, we have estimated the Curie temperature of LMO thin films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-67

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys., Vol. 70 (1998), p.39.

Google Scholar

[2] Y. Tokura: Colossal Magnetoresistive Oxides (Gordon and Breach Science Publishers, Amsterdam, The Netherlands 2000), p.1.

Google Scholar

[3] Y. Tokura, Rep. Prog. Phys., Vol. 69(3) (2006), p.797.

Google Scholar

[4] Z. Sheng, M. Nakamura, F. Kagawa, M. Kawasaki and Y. Tokura, Nat. Commun. Online Edit., Vol. 3 (2012), p.944.

Google Scholar

[5] E. O. Wollan and W. C. Koehler, Phys. Rev., Vol. 100 (1955), p.545.

Google Scholar

[6] C. Zener, Phys. Rev., Vol. 81 (1951), p.440.

Google Scholar

[7] J. B. Goodenough, Phys. Rev., Vol. 100 (1955), p.564.

Google Scholar

[8] N. Nishimoto, K. Yoshino, J. Fujihara and K. Kitahara, e-J. Surf. Sci. Nanotech. Vol. 13 (2015) p.185.

Google Scholar

[9] Y. Yamada, T. Kato, T. Ishibashi, T. Okamoto and N. Mori, AIP ADVANCES, Vol. 8, (2018) p.015101.

Google Scholar

[10] L. P. Gor'kov, V. Z. Kresin, Physics Reports Vol. 400 (2004), p.149.

Google Scholar

[11] H. Khanduri, M. C. Dimri, S. Vasala, S. Leinberg, R. Lohmus, T. V. Ashworth, A. Mere, J. Krustok, M. Karppinen and R. Stern, J. Phys. D: Appl. Phys. Vol. 46 (2013), p.175003.

DOI: 10.1088/0022-3727/46/17/175003

Google Scholar

[12] H. Kobori, T. Kitamura, T. Taniguchi and T. Shimizu, Material Science Forum. Vol. 962 (2019), p.17.

Google Scholar