The Effect of Nanostructured Hydroxyapatite Coating on Distraction Osteogenesis

Article Preview

Abstract:

Dogs underwent high-frequency automated tibia lengthening with the Ilizarov apparatus over a 1.8-mm hydroxyapatite-coated intramedullary titanium wire. Daily distraction was 3.0 mm with a fraction of 0.125 mm/h and continued ten days. The regenerate was well vascularized, had zonal structure and was of normal or hyperplastic type to the end of distraction. Osteogenesis was fast and complete. The wire served for both mechanical and biological reinforcement of the bone callus and provided reduction of external fixation time. Mean consolidation time with the apparatus on the limb was 13.83±4.02 days. Overall, external fixation index was 10.5 days/cm and 4.8 days/cm in the consolidation phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

216-222

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. T. Sun, T. R. Easwar, S. Manesh, J. H. Ryu, S. H. Song, S. J. Kim, H. R. Song, Complications and outcome of tibial lengthening using the Ilizarov method with or without a supplementary intramedullary nail: a case-matched comparative study, J. Bone Joint Surg. Br. 93(6) (2011) 782-787.

DOI: 10.1302/0301-620x.93b6.25521

Google Scholar

[2] A. V. Gubin, D. Y. Borzunov, T. A. Malkova, Ilizarov method for bone lengthening and defect management: Review of contemporary literature, Bull. Hosp. Jt. Dis. 74(2) (2016) 145-154.

Google Scholar

[3] X. Lan, L. Zhang, P. Tang, H. Xia, G. Li, A. Peng, Y. Han, B. Yuan, W. Xu, S-osteotomy with lengthening and then nailing compared with traditional Ilizarov method, Int. Orthop. 37(10) (2013) 1995-2000.

DOI: 10.1007/s00264-013-1962-x

Google Scholar

[4] D. A. Popkov, A. V. Popkov, V. A. Shurov, N. A. Kononovich, Functional recovery after operative lower limb lengthening at high-division regime in children, Surgery News (in Russian) 24(4) (2016) 373-378.

DOI: 10.18484/2305-0047.2016.4.373

Google Scholar

[5] D. Popkov, P. Lascombes, P. Journeau, A. Popkov, Current approaches to flexible intramedullary nailing for bone lengthening in children, J. Child Orthop. 10(6) (2016) 499-509.

DOI: 10.1007/s11832-016-0781-1

Google Scholar

[6] A. S. Bright, J. E. Herzenberg, D. Paley et al., Preliminary experience with motorized distraction for tibial lengthening, Strategies Trauma Limb Reconstr. 9(2) (2014) 97-100.

DOI: 10.1007/s11751-014-0191-1

Google Scholar

[7] X. L. Liu, H. X. Zhang, L. Ma, L. Peng, L. K. Cheung, L. W. Zheng, Responses of distraction regenerate to high-frequency traction at a rapid rate, J. Trauma Acute Care Surg. 72(4) (2012) 1035-1039.

DOI: 10.1097/ta.0b013e31823cc867

Google Scholar

[8] Y. N. Gorbach, M. A. Stepanov, Peculiarities of bone tissue morphogenesis during shin lengthening using the method of transosseous distraction osteosynthesis with an increased daily rate, Mophology (in Russian) 147(2) (2015) 69-74.

Google Scholar

[9] D. H. Lee, K. J. Ryu, J. W. Kim, K. C. Kang, Y. R. Choi, Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia, Clin. Orthop. Relat. Res. 472(12) (2014) 3789-3797.

DOI: 10.1007/s11999-014-3548-3

Google Scholar

[10] A. V. Popkov, E. N. Gorbach, N. A. Kononovich, D. A. Popkov, S. I. Tverdokhlebov, E. V. Shesterikov, Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis, Strategies Trauma Limb Reconstr. 12(2) (2017) 107-113.

DOI: 10.1007/s11751-017-0282-x

Google Scholar

[11] A. A. Shreiner, S. A. Erofeev, M. M. Shchudlo, A. M. Chirkova, N. R. Karymov, Theoretical aspects of distraction osteosynthesis. Importance of the distraction mode, Orthopedics geniuses (in Russian) 2 (1999) 13-17. http://ilizarov-journal.com/index.php/go/article/view/1908/1885.

Google Scholar

[12] H. W. Park, K. H. Yang, K. S. Lee, S. Y. Joo, Y. H. Kwak, H. W. Kim, Tibial lengthening over an intramedullary nail with use of the Ilizarov external fixator for idiopathic short stature, J. Bone Joint Surg. Am. 90(9) (2008) 1970-1978.

DOI: 10.2106/jbjs.g.00897

Google Scholar

[13] K. J. Ryu, B. H. Kim, J. H. Hwang, H. W. Kim, D. H. Lee, Reamed intramedullary nailing has an adverse effect on bone regeneration during the distraction phase in tibial lengthening, Clin. Orthop. Relat. Res. 474(3) (2016) 816-824.

DOI: 10.1007/s11999-015-4613-2

Google Scholar

[14] S. Overgaard, K. Søballe, M. Lind, C. Bünger, Resorption of hydroxyapatite and fluorapatite coatings in man an experimental study in trabecular bone, J. Bone Joint Surg. 79-B(4) (1997) 654-659.

DOI: 10.1302/0301-620x.79b4.0790654

Google Scholar

[15] M. Yu, K. Zhou, Z. Li, D. Zhang, Preparation, characterization and in vitro gentamicin release of porous HA microspheres, Mater. Sci. Eng. C Mater. Biol. Appl. 45 (2014) 306-312.

DOI: 10.1016/j.msec.2014.08.075

Google Scholar

[16] S. V. Dorozhkin, Biocomposites and hybrid biomaterials based on calcium orthophosphates, Biomatter. 1(1) (2011) 3-56.

DOI: 10.4161/biom.1.1.16782

Google Scholar

[17] N. A. Kononovich, M. V. Stogov, A. V. Popkov, E. N. Gorbach, E. A. Kireeva, N. V. Tushina, D. A. Popkov, Kinetics of calcium and phosphate release from the surface of implants coated using different techniques, Biomedical Engineering 53(3) (2019) 190-193.

DOI: 10.1007/s10527-019-09906-z

Google Scholar