Composition and Properties of TiO2 Sol to Produce a Photocatalytic Composite Material

Article Preview

Abstract:

The paper presents the process of sol-gel synthesis of titanium dioxide nanoparticles, the peculiarities of the influence of component composition (titanium precursor content, solvent and stabilizer − surfactant) on the properties of sol and powder obtained on its basis. As a result of the study, the nature of the influence of the type and content of the surfactant in the solution of tetrabutoxytitanium in ethanol on the size of the synthesized particles of titanium dioxide was revealed. The optimal composition of the reaction mixture of TiO–R sol was obtained and the optimal ratio of tetrabutoxytitanium and ethyl alcohol was revealed using which a material with a high content of nanosized titanium dioxide was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-50

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Miszczak, B. Pietrzyk, Anatase–rutile transformation of TiO2 sol-gel coatings deposited on different substrates, Ceram. Int. 41 (2015) 7461-7465.

DOI: 10.1016/j.ceramint.2015.02.066

Google Scholar

[2] M. Z. Yahaya, M. Z. Abdullah, A. A. Mohamad, Centrifuge and storage precipitation of TiO2 nanoparticles by the sol-gel method, J. Alloys Compd. 651 (2015) 557-564.

DOI: 10.1016/j.jallcom.2015.08.110

Google Scholar

[3] L. P. Singh, S. K. Bhattacharyya, R. Kumar, G. Mishra, U. Sharma, G. Singh, S. Ahalawat, Sol-Gel processing of silica nanoparticles and their applications, Adv. Colloid Interface Sci. 214 (2014) 17-37.

DOI: 10.1016/j.cis.2014.10.007

Google Scholar

[4] U. G. Akpan, B. H. Hammed, The advancements in sol-gel method of doped-TiO2 photocatalysts, Appl. Catal. A-Gen. 375 (2010) 1-11.

Google Scholar

[5] A. B. Atkarskaya, V. M. Nartzev, V. E. Privalov, V. G. Shemanin, The photocatalytic activity of the glass composites with the titan dioxide sol-gel films studies, Opt. Mem. Neural. Network 26(3) (2017) 216-220.

DOI: 10.3103/s1060992x1703002x

Google Scholar

[6] D. Komaraiah, E. Radha, N. Kalarikkal, J. Sivakumar, M. V. Ramana Reddy, R. Sayanna, Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts, Ceram. Int. 45(18) (2019) 25060-25068.

DOI: 10.1016/j.ceramint.2019.03.170

Google Scholar

[7] A. Wu, D. Wang, C. Wei, X. Zhang, Z. Liu, P. Feng, X. Ou, Y. Qiang, H. Garcia, J. Niu, A comparative photocatalytic study of TiO2 loaded on three natural clays with different morphologies, Appl. Clay. Sci. 183 (2019) 105352.

DOI: 10.1016/j.clay.2019.105352

Google Scholar

[8] A. N. Murashkevich, O. A. Alisienok, I. M. Zharskiy, M. S. Novitskaya, O. V. Fedorova, A. I. Maximovskikh, Titania sols as precursors in sol-gel technologies of composite materials for photocatalysis, electrorheology, sorption, J. Sol-Gel Sci. Technol. 92(2) (2019) 254-263.

DOI: 10.1007/s10971-019-04981-w

Google Scholar

[9] B. Pant, M. Park, S.-J. Park, Recent advances in TiO2 films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities, Coatings 9(10) (2019) 613.

DOI: 10.3390/coatings9100613

Google Scholar

[10] M. Faraldos, R. Kropp, M. A. Anderson, K. Sobolev, Photocatalytic hydrophobic concrete coatings to combat air pollution, Catal. Today 259 (2015) 228-236.

DOI: 10.1016/j.cattod.2015.07.025

Google Scholar

[11] H. Wang, D. Wang, P. Hou, Preparation of TiO2@SiO2 and its effect on surface photocatalysis and water absorbency of cement-based materials, Gongneng Cailiao/Journal of Functional Materials 48(10) (2017) 10174-10177 and 10182.

Google Scholar

[12] R. Zuo, G. Du, W. Zhang, L. Liu, Y. Liu, L. Mei, Z. Li, Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite, Adv. Mater. Sci. Eng. 2014 (2014) 170148.

DOI: 10.1155/2014/170148

Google Scholar

[13] J. Yang, X. Xu, Y. Liu, Y. Gao, H. Chen, H. Li, Preparation of SiO2@TiO2 composite nanosheets and their application in photocatalytic degradation of malachite green at emulsion interface, Colloids Surf. A, 582 (2019) 123858.

DOI: 10.1016/j.colsurfa.2019.123858

Google Scholar

[14] J. Wang, S. Sun, H. Ding, W. Chen, Y. Liang, Preparation of a composite photocatalyst with enhanced photocatalytic activity: Smaller TiO2 carried on SiO2 microsphere, Appl. Surf. Sci. 493 (2019) 146-156.

DOI: 10.1016/j.apsusc.2019.07.005

Google Scholar

[15] A. B. Atkarskaya, V. G. Shemanin, Influence of the viscosity of film-forming solutions on light losses in nanodimensional coatings based on SiO2, ‎Phys. Chem. Glasses 40(6) (2014) 623-628.

DOI: 10.1134/s1087659614060030

Google Scholar

[16] N. A. Shapovalov, A. A. Slyusar', O. A. Slyusar', The effect of oligomeric electrolytes on the aggregative stability and rheological properties of aqueous mineral suspensions, Colloid J. 68(3) (2006) 350-356.

DOI: 10.1134/s1061933x06030148

Google Scholar

[17] A. N. Kharkhardin, N. I. Kozhukhova, V. V. Strokova, Nano- and Micro-Sized Discreteness Levels of Substance, Int. J. Adv. Biotechnol. Res. 7(3) (2016) 920-924.

Google Scholar

[18] L. K. Zagorodnuk, V. S. Lesovik, M. Y. Elistratkin, D. A. Sumskoy, D. S. Makhortov, S. V. Zolotykh, New methods for manufacturing composite materials, J. Phys. Conf. 1353 (2019) 012060.

DOI: 10.1088/1742-6596/1353/1/012060

Google Scholar

[19] N. Thiwakornkitkul, T. Suteewong, Effect of Morphology of Titanium Dioxide Nanoparticles on Photocatalytic Activity, IOP Conf. Ser.: Mater. Sci. Eng. 639 (2019) 012021.

DOI: 10.1088/1757-899x/639/1/012021

Google Scholar