Physicochemical Properties of Zirconium Oxide Nanopowder Synthesized in Low-Pressure Arc Discharge Plasma

Article Preview

Abstract:

The method for synthesis of zirconium oxide nanopowder in low-pressure arc plasma was developed. The physicochemical properties of the nanopowder were studied. The estimation was carried out by means of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The sequence and kinetics of structural transformations occurring in the specified time-temperature heating regimes have been examined using differential thermal analysis. It was shown that the particles have a nanometer size, a narrow particle size distribution and an amorphous-crystalline structure. The maximum specific surface area detected by the method of sorption of surfactants was 470 m2/g. The issues of crystallization were discussed. From comparison between the results of experimental studies from earlier works with the results obtained for zirconium oxide, it is concluded that the proposed method for producing NPs in a low-pressure arc discharge plasma is universal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-56

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Liang, Z. Deng, X. Jiang, F. Li, Y. Li, Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation, Inorg. Chem. 41 (2002) 3602-3604.

DOI: 10.1021/ic025532q

Google Scholar

[2] S. C. Thomas, Harshita, P. K. Mishra, S. Talegaonkar, Ceramic nanoparticles: Fabrication methods and applications in drug delivery, Curr. Pharmaceutical Design 21 (2015) 6165-6188.

DOI: 10.2174/1381612821666151027153246

Google Scholar

[3] J. B. Fathima, A. Pugazhendhi, R. Venis, Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care, Microbial Pathogenesis 110 (2017) 245-251.

DOI: 10.1016/j.micpath.2017.06.039

Google Scholar

[4] S. Sagadevan, J. Podder, I. Das, Hydrothermal synthesis of zirconium oxide nanoparticles and its characterization, Journal of Mat. Sci.: Materials in Electronics 27 (2016) 5622-5627.

DOI: 10.1007/s10854-016-4469-6

Google Scholar

[5] T. Kozawa, J. J. Santillan, T. Itani, Electron-hole pairs generated in ZrO2 nanoparticle resist upon exposure to extreme ultraviolet radiation, Japanese Journal of Applied Physics 57 (2018) 026501.

DOI: 10.7567/jjap.57.026501

Google Scholar

[6] I. R. Gibson, G. P. Dransfield, J. T. S. Irvine, Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity, J. Mat. Sci. 33 (1998) 4297-4305.

DOI: 10.1023/a:1004435504482

Google Scholar

[7] Y. H. Lee, C. W. Kuo, I. M. Hung, K. Z. Fung, M. Wang, The thermal behavior of 8 mol% yttria-stabilized zirconia nanocrystallites prepared by a sol–gel process, J. Non-Cryst. Solids 351 (2005) 3709-3715.

DOI: 10.1016/j.jnoncrysol.2005.09.029

Google Scholar

[8] B. L. Kirsch, S. H. Tolbert, Stabilization of isolated hydrous amorphous and tetragonal zirconia nanoparticles through the formation of a passivating alumina shell, Adv. Funct. Mater. 13 (2003) 281-288.

DOI: 10.1002/adfm.200304267

Google Scholar

[9] S. N. Basahel, T. T. Ali, M. Mokhtar, K. Narasimharao, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange, Nanoscale Research Letters 10 (2015) 13.

DOI: 10.1186/s11671-015-0780-z

Google Scholar

[10] J. Azorin, T. Rivera, C. Furetta, A. Sánchez-Rodríguez, Ultraviolet induced thermoluminescence in gadolinium-doped zirconium oxide films, Materials Science Forum 480-481 (2005) 145-148.

DOI: 10.4028/www.scientific.net/msf.480-481.145

Google Scholar

[11] A. Khataee, P. Gholami, B. Kayan, D. Kalderis, L. Dinpazhoh, S. Akay, Synthesis of ZrO2 nanoparticles on pumice and tuff for sonocatalytic degradation of rifampin, Ultrasonics Sonochemistry 48 (2018) 349-361.

DOI: 10.1016/j.ultsonch.2018.05.008

Google Scholar

[12] T. Akune, Y. Morita, S. Shirakawa, K. Katagiri, K. Inumaru, ZrO2 Nanocrystals as catalyst for synthesis of dimethylcarbonate from methanol and carbon dioxide: Catalytic activity and elucidation of active sites, Langmuir 34 (2018) 23-29.

DOI: 10.1021/acs.langmuir.7b01294

Google Scholar

[13] I. V. Karpov, A. V. Ushakov, A. A. Lepeshev, L. Yu. Fedorov, Plasma-chemical reactor based on a low-pressure pulsed arc discharge for synthesis of nanopowders, Technical Physics 62 (2017) 168-173.

DOI: 10.1134/s106378421701011x

Google Scholar

[14] A. A. Lepeshev, I. V. Karpov, A. V. Ushakov, G. E. Nagibin, The morphological and structural features of ferrite compositions (1–x)MeFe2O4·xP2O5 prepared by plasma spraying, J. of Alloys and Compounds 663 (2016) 631-635.

DOI: 10.1016/j.jallcom.2015.12.168

Google Scholar

[15] A. A. Lepeshev, O. A. Bayukov, E. A. Rozhkova, I. V. Karpov, A. V. Ushakov, L. Yu. Fedorov, Modification of the phase composition and structure of the quasicrystalline Al-Cu-Fe alloy prepared by plasma spraying, Phys. of the Solid State 57 (2015) 255-259.

DOI: 10.1134/s1063783415020249

Google Scholar