[1]
H.I. Moussa, A. Elkamel, S.B. Young, Assessing energy performance of bio-based succinic acid production using LCA. J. Cleaner Prod. 139 (2016) 761-769.
DOI: 10.1016/j.jclepro.2016.08.104
Google Scholar
[2]
D. Yan, C. Wang, J. Zhou, Y. Liu, M. Yang, J. Xing, Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value, Bioresour. Technol. 156 (2014) 232-239.
DOI: 10.1016/j.biortech.2014.01.053
Google Scholar
[3]
P. Maneechakr, S. Karnjanakom, Catalytic transformation of furfural into bio-based succinic acid via ultrasonic oxidation using b–cyclodextrin-SO3H carbon catalyst: a liquid biofuel candidate, Energy Convers. Manag. 154 (2017) 299-310.
DOI: 10.1016/j.enconman.2017.10.069
Google Scholar
[4]
X. Li, M. Zhang, J. Luo, S. Zhang, X. Yang, A.D. Igalavithana, Y.S. Ok, D.C.W. Tsang, C.S.K. Lin, Efficient succinic acid production using a biochar-treated textile waste hydrolysate in an in situ fibrous bed bioreactor, Biochem. Eng. J. 149 (2019) 107249.
DOI: 10.1016/j.bej.2019.107249
Google Scholar
[5]
X. Li, X. Lan, T. Wang, Selective oxidation of furfural in a bi-phasic system with homogeneous acid catalyst, Catal. Today 276 (2016) 97-104.
DOI: 10.1016/j.cattod.2015.11.036
Google Scholar
[6]
H. Choudhary, S. Nishimura, K. Ebitani, Metal-free oxidative synthesis of succinic acid from biomass-derived furan compounds using a solid acid catalyst with hydrogen peroxide, Appl. Catal. A-Gen. 458 (2013) 55-62.
DOI: 10.1016/j.apcata.2013.03.033
Google Scholar
[7]
M. Rezaei, A.N. Chermahini, H.A. Dabbagh, M. Saraji, A. Shahvar, Furfural oxidation to maleic acid with H2O2 using vanadyl pyrophosphate and zirconium pyrophosphate supported on well-ordered mesoporous KIT-6, J. Environ. Chem. Eng. 7 (2019) 102855.
DOI: 10.1016/j.jece.2018.102855
Google Scholar
[8]
H. Guo, G. Yin, Catalytic aerobic oxidation of renewable furfural with phosphomolybdic acid catalysts: an alternative route to maleic acid, J. Phys. Chem. C 115 (2011) 17516-17522.
DOI: 10.1021/jp2054712
Google Scholar
[9]
L. Zhou, B. Dong, S. Tang, H. Ma, C. Chen, X. Yang, J. Xu, Sulfonated carbon catalyzed oxidation of aldehydes to carboxylic acids by hydrogen peroxide, J. Energy Chem. 22 (2013) 659-664.
DOI: 10.1016/s2095-4956(13)60087-x
Google Scholar
[10]
L.J. Konwar, R. Das, A.J. Thakur, E. Salminen, P. Mäki-Arvela P, N. Kumar, J.P. Mikkola, D. Deka, Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste, J. Mol. Catal. A: Chem. 388–389 (2014) 167-176.
DOI: 10.1016/j.molcata.2013.09.031
Google Scholar
[11]
R.M.A. Saboya, J.A. Cecilia, C. García-Sancho, A.V. Sales, F.M.T. de Luna, E. Rodríguez-Castellón, C.L. Cavalcante Jr., Assessment of commercial resins in the biolubricants production fromfree fatty acids of castor oil, Catal. Today 279 (2017) 274-285.
DOI: 10.1016/j.cattod.2016.02.020
Google Scholar
[12]
G. Fan, C. Liao, T. Fang, S. Luo, G. Song, Amberlyst 15 as a new and reusable catalyst for the conversion ofcellulose into cellulose acetate, Carbohyd. Polym. 112 (2014) 203-209.
DOI: 10.1016/j.carbpol.2014.05.082
Google Scholar
[13]
L. Tang, B. Huang, W. Ou, X. Chen, Y. Chen, Manufacture of cellulosenanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose, Bioresour. Technol. 102 (2011) 10973-10977.
DOI: 10.1016/j.biortech.2011.09.070
Google Scholar
[14]
E.M. Santos, A.P.C. Teixeira, F.G. Silva, T.E. Cibaka, M.H. Araújo, W.X.C. Oliveira, F. Medeiros, A.N. Brasil, L.S. Oliveira, R.M. Lago, New heterogeneous catalyst for the esterification of fatty acid produced by surface aromatization/sulfonation of oilseed cake, Fuel 150 (2015) 408-414.
DOI: 10.1016/j.fuel.2015.02.027
Google Scholar
[15]
C. Dussenne, H. Wyart, V. Wiatz, I. Suisse, M. Sauthier, Catalytic dehydration of sorbitol to isosorbide in the presence of metal tosylate salts and metallized resins, Mol. Catal. 463 (2019) 61-66.
DOI: 10.1016/j.mcat.2018.11.004
Google Scholar