Preliminary Ions Removal from Synthetic Iron Solution by Zeolite and Perlite via XRF Technique

Article Preview

Abstract:

Ion removal is a long problem on natural freshwater resources. In order to modify the adsorption performance to remove ions from standard iron solution, natural zeolite and natural perlite were treated with deionized water (DI water) as D-zeolite and D-perlite. And, 1M sulphuric acid (H2SO4) was used to treat the adsorbent as H-zeolite and H-perlite. The capability of ion removal was preliminarily investigated from the reduction of iron in solution by X-ray fluorescence spectrometer. The result showed that treatment of adsorbents with DI water was more capability than 1M H2SO4 solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-217

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. H. Teow, A. W. Mohammad, New generation nanomaterials for water desalination: A review, Desalination. 451 (2017) 2-17.

DOI: 10.1016/j.desal.2017.11.041

Google Scholar

[2] P. S. Goh, T. Matsuura, A. F. Ismail, N. Hilal, Recent trends in membranes and membrane processes for desalination, Desalination. 391 (2016) 43-60.

DOI: 10.1016/j.desal.2015.12.016

Google Scholar

[3] M. A. Stylianou, V. J. Inglezakis, K. G. Moustakas, S. Ph. Malamis, M. D. Loizidou, Removal of Cu (II) in fixed bed and batch reactors using natural zeolite and exfoliated vermiculite as adsorbents, Desalination. 215 (2007) 133-142.

DOI: 10.1016/j.desal.2006.10.031

Google Scholar

[4] Z. Yuna, Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater, Environ. Eng. Sci. 33 (2016) 1-12.

DOI: 10.1089/ees.2015.0166

Google Scholar

[5] S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J. 156 (2010) 11-24.

Google Scholar

[6] A. E. Burakov, E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev, V. K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotoxicol. Environ. Saf. 148 (2018) 702-712.

DOI: 10.1016/j.ecoenv.2017.11.034

Google Scholar

[7] S. Edebali, Alternative composite nanosorbents based on turkish perlite for the removal of Cr (VI) from aqueous solution, J. Nanomater. 2015 (2015) 1-7.

DOI: 10.1155/2015/697026

Google Scholar

[8] V. J Inglezakis, M. D. Loizidou, H. P. GrigoropoulouIon, exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: Selectivity determination and influence of acidity on metal uptake, J. Colloid Interface Sci. 261 (2003) 49-54.

DOI: 10.1016/s0021-9797(02)00244-8

Google Scholar

[9] L. Chmielarz, A. S. Kowalczyk, X. B. Tolosa, M. Michalík, Adsorbents for iron removal obtained from vermiculite, Acta Geomater. 10 (2013) 353-361.

Google Scholar

[10] M. Byambaa, E. Dolgor, K. Shiomor, Y. Suzuki, Removal and recovery of heavy metals from industrial wastewater by precipitation and foam separation using lime and casein, J. Environ Sci Technol. 11 (2018) 1-9.

DOI: 10.3923/jest.2018.1.9

Google Scholar

[11] A. Da̧browski, Z. Hubicki, P. Podkościelny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere. 56 (2004) 91-106.

DOI: 10.1016/j.chemosphere.2004.03.006

Google Scholar

[12] H. A. Qdais, H. Moussa, Removal of heavy metals from wastewater by membrane processes: a comparative study, Desalination. 164 (2004) 105-110.

DOI: 10.1016/s0011-9164(04)00169-9

Google Scholar

[13] F. M. Pang, S. P. Teng, T. T. Teng, A. K. M. Omar, Heavy metals removal by hydroxide precipitation and coagulation-flocculation methods from aqueous solutions, Water. Qual. Res. J. 44 (2009) 174-182.

DOI: 10.2166/wqrj.2009.019

Google Scholar

[14] S. L. R. K. Kanamarlapudi, V. K. Chintalpudi, S. Muddada, Application of biosorption for removal of heavy metals from wastewater, Biosorption, London, (2018).

DOI: 10.5772/intechopen.77315

Google Scholar

[15] Z. Peng, D. WenJie, Z. YanJun, D. KangHai, L. Wei, Heavy metal ions removal from water using modified zeolite, J. Chem. Pharm. Res. 6 (2014) 507-514.

Google Scholar

[16] K. He, Y. Chen, Z. Tang, Y. Hu, Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash, Environ. Sci. Pollut. Res. Int. 23 (2016) 2778-2788.

DOI: 10.1007/s11356-015-5422-6

Google Scholar

[17] C.-C. Kan, A. H. Ibe, K. K. P. Rivera, R. O. Arazo, M. D. G. de Luna, Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals, Sustain. Environ. Res. 27 (2017) 163-171.

DOI: 10.1016/j.serj.2017.04.001

Google Scholar

[18] G. Vijayakumar, R. Tamilarasan, M. Dharmendirakumar, Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite, J. Mater. Environ. Sci. 3 (2012) 157-170.

Google Scholar

[19] M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals removal using activated carbon, silica and silica activated carbon composite, Energy Procedia. 50 (2014) 113-120.

DOI: 10.1016/j.egypro.2014.06.014

Google Scholar

[20] F. Shokrian, K. Solaimani, G. Nematzadeh, P. Biparva, Removal of NaCl from aqueous solutions by using clinoptilolite, Intl J Farm & Alli Sci. 4 (2015) 50-54.

Google Scholar

[21] M. Malakootian, N. Jaafarzadeh, H. Hossaini, Efficiency of perlite as a low cost adsorbent applied to removal of Pb and Cd from paint industry effluent, Desalination Water Treat. 26 (2011) 243-249.

DOI: 10.5004/dwt.2011.1748

Google Scholar

[22] E. Zanin, J. Scapinello, M. Oliveira, C. L. Rambo, F. Franscescon et al., Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent, Process Saf. Environ. Prot. 105 (2017) 194-200.

DOI: 10.1016/j.psep.2016.11.008

Google Scholar

[23] M. Doğan, M. Alkan, Y. Onganer, Adsorption of methylene blue from aqueous solution onto perlite, Water. Air. Soil Pollut. 120 (2000) 229-248.

DOI: 10.1023/a:1005297724304

Google Scholar

[24] M. Torab-Mostaedi, H. Ghassabzadeh, M. Ghannadi-Maragheh, S. Ahmadi, H. Taheri, Removal of cadmium and nickel from aqueous solution using expanded perlite, Braz. J. Chem. Eng. 27 (2010) 299-308.

DOI: 10.1590/s0104-66322010000200008

Google Scholar

[25] M. Alkan, M. Doğan, Adsorption of copper(II) onto perlite, J. Colloid Interface Sci. 243, (2001) 280-291.

DOI: 10.1006/jcis.2001.7796

Google Scholar

[26] A. Shokrolahzadeh, A. Shokuhi Rad, J. Adinehvand, Modification of nano clinoptilolite zeolite using sulfuric acid and its application toward removal of arsenic from water sample, J. Nanoanalysis. 4 (2017) 48-58.

Google Scholar

[27] E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci. 280 (2004) 309-314.

DOI: 10.1016/j.jcis.2004.08.028

Google Scholar

[28] L. E. Burris, M. C. G. Juenger, The effect of acid treatment on the reactivity of natural zeolites used as supplementary cementitious materials, Cem. Concr. Res. 79 (2016) 185-193.

DOI: 10.1016/j.cemconres.2015.08.007

Google Scholar