The Effect of Interaction Weight on Dipole Field Calculations to Reconstruct the La2CuO4 μSR Spectrum

Article Preview

Abstract:

A modified dipole field equation proposed to reconstruct the μSR spectrum theoretically. Gaussian interaction weight added in dipole field calculation to investigate the effective interaction range between muon and its surrounding spin. The width of Gaussian interaction weight traced until the theoretical spectrum fit the data. The theoretical spectrum limited only to minima within the unit cell. By using the interaction weight the main peak spectrum can be reproduced without having a contradiction with the magnetic moment measured from neutron. Effective interaction between muon and surrounding spin estimated to be around which is relatively small.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-170

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.J. Uemura, C.E. Stronach, D.C. Johnston, M.S. Alvarez, D. P. Goshorn, Antiferromagnetism of La2CuO4-y studied by muon-spin rotation, Phys. Rev. Lett. 59 (1987) 1045-1048.

Google Scholar

[2] J.I. Budnick, A. Golnik, Ch. Niedermayer, E. Recknagel, M. Rossmanith, A. Weidinger, Obeservation of magnetic ordering in La2CuO4 by muon spin rotation spectroscopy, Phys. Lett. A 124 (1987) 103-106.

DOI: 10.1016/0375-9601(87)90382-3

Google Scholar

[3] D.R. Harshman, G.A. Aeppli, G.P. Espinosa, A.S. Cooper, J.P. Remeika, E.J. Ansaldo, T.M. Riseman, D.Ll. Williams, D.R. Noakes, B. Ellman, T.F. Rosenbaum, Freezing of spin and charge in La2-xSrxCuO4, Phys. Rev. B 38 (1988) 852-855.

DOI: 10.1016/0921-4534(88)90211-0

Google Scholar

[4] V.G. Grebinnik, V.N. Duginov, V.A. Zhukov, S. Kapusta, A.B. Lazarev, V.G.V G. Olshevsky, V.Yu. Pomjakushin, S.N. Shilov, Antiferromagnetism and spin-glass-like behaviour in ceramics La2-xSrxCuO4 studied by μSR, Hyp. Int. 61 (1990) 1085-1088.

DOI: 10.1007/bf02407577

Google Scholar

[5] B. Hitti, P. Birrer, K. Fisher, F.N. Gygax, E. Lippelt, H. Maletta, A. Schenk and M. Weber, Study of La2CuO4 and related compounds by μSR, Hyp. Int. 63 (1990) 287-294.

DOI: 10.1007/bf02396016

Google Scholar

[6] F. Borsa, P. Carretta, J.H. Cho, F.C. Chou, Q. Hu, D.C. Johnston, A. Lascialfari, D.R. Torgeson, R.J. Gooding, N.M. Salem, K.J.E. Vos, Staggered magnetization in La2-xSrxCuO4 from 𝐿𝑎139 NQR and effects of Sr doping in the range 0 < x < 0.02, Phys. Rev. B 52 (1995) 7334-7345.

DOI: 10.1007/bf00727275

Google Scholar

[7] E. Stilp, A. Suter, T. Prokscha, E. Morenzoni, H. Keller, B. M. Wojek, H. Luetkens, A. Gozar, G. Logvenov, I. Bozovic, Magnetic phase diagram of low-doped La2-xSrxCuO4 thin films studied by Low-energy muon-spin rotation, Phys. Rev. B 88 (2013) 064419.

DOI: 10.1103/physrevb.88.064419

Google Scholar

[8] V.G. Storchak, J.H. Brewer, D.G. Eshchenko, P.W. Mengyan, O.E. Parfenov, A.M. Tokmachev, P. Dosanjh, Coupling of magnetic orders in La2CuO4+x, Phys. Rev. B 94 (2016) 134407.

DOI: 10.1103/physrevb.94.134407

Google Scholar

[9] D. Vaknin, S.K. Sinha, D.E. Moncton, D.C. Johnston, J.M. Newsam, C.R. Safinya, H.E. King, Antiferromagnetism in La2CuO4-x, Phys. Rev. Lett. 59 (1987) 2808.

Google Scholar

[10] T. Freltoft, J.E. Fischer, G. Shirane, D.E. Moncton, S.K. Sinha, D. Vaknin, J.P. Remeika, A.S. Cooper, D. Harshman, Antiferromagnetism and oxygen deficiency in single-crystal La2CuO4-δ, Phys. Rev. B 36 (1987) 826-828.

DOI: 10.1007/978-1-4613-1937-5_88

Google Scholar

[11] B.X. Yang, S. Mitsuda, G. Shirane, Y. Yamaguchi, H. Yamauchi, Y. Syono, Search for magnetic scattering in La2CuO4, J. Phys. Soc. Jpn. 56 (1987) 2283-2286.

DOI: 10.1143/jpsj.56.2283

Google Scholar

[12] G. Shirane, Y. Endoh, R.J. Birgeneau, M.A. Kastner, Y. Hidaka, M. Oda, M. Suziki, T. Murakami, Two-dimensional antiferromagnetic quantum spin-fluid State in La2CuO4, Phys. Rev. Lett. 59 (1987) 1613-1616.

DOI: 10.1103/physrevlett.59.1613

Google Scholar

[13] S. Mitsuda, G. Shirane, S.K. Sinha, D.C. Johnston, M.S. Alvarez, D. Vaknin, D.E. Mocton, Confirmation of antiferromagnetism in La2CuO4-y with polarized neutrons. Phys. Rev. B 36 (1987) 822-825.

Google Scholar

[14] O. Scharpf, H. Capellmann, Structural and magnetic investigations of a La2CuO4 single crystal with polarization analysis. Zeltschrift fur Physik B 80 (1990) 253-262.

DOI: 10.1007/bf01357511

Google Scholar

[15] M. Reehuis, C. Ulrich, K. Prokes, A. Gozar, G. Blumberg, S. Komiya, Y. Ando, P. Pattison, B. Keimer, Crystal structure and high-field magnetism of La2CuO4, Phys. Rev. B. 73 (2006) 144513.

DOI: 10.1103/physrevb.73.144513

Google Scholar

[16] E. Torikai, K. Nagamine, H. Kitazawa, I. Tanaka, H. Kojima, S.B. Sulaiman, S. Srinivas, T.P. Das, Behaviour of positive muons in high Tc superconductors La2-xSrxCuO4, Hyp. Int. 79 (1993) 921.

DOI: 10.1007/bf00567628

Google Scholar

[17] S.B. Sulaiman, S. Rinivas, N. Sahoo. F. Hagelberg, T.P. Das, E. Torikai, K. Nagamine, Theory of the location and associated hyperfine properties of the positive muon in La2CuO4, Phys. Rev. B 49 (1994) 9879.

DOI: 10.1007/bf02060647

Google Scholar

[18] T. McMullen, P. Jena, S.N. Khanna, Screening of a positive muon by semion gas, Int. J. Mod. Phys. B5 (1991) 1579.

DOI: 10.1142/s0217979291001486

Google Scholar

[19] R. Saito, H. Kamimura, K. Nagamine, Theory of positive muon spin rotation in La2CuO4, Physica C 185-189 (1991) 1217.

DOI: 10.1016/0921-4534(91)91832-o

Google Scholar

[20] H.U. Suter, E.P. Stoll, P.F. Meier, Muon sites and hyperfine fields in La2CuO4, Physica B 326 (2003) 329-332.

DOI: 10.1016/s0921-4526(02)01651-4

Google Scholar

[21] B. Adiperdana, I.A. Dharmawan, R.E. Siregar, I. Watanabe, K. Ohishi, Y. Ishii, T. Suzuki, T. Kawamata, Risdiana, R. Sheuermann, K. Sedlak, Y. Tomioka, T. Waki, Y. Tabata, H. Nakamura, Muon sites estimation in La2CuO4 and a new vanadium cluster compound V4S9Br4 using electronic and nuclear dipole field calculations, Physics Procedia 30 (2012) 109-112.

DOI: 10.1016/j.phpro.2012.04.051

Google Scholar

[22] B. Adiperdana, I.A. Dharmawan, R.E. Siregar, S. Sulaiman, M-I. Mohamed-Ibrahim, I. Watanabe, Muon sites estimations on La2CuO4 using dipole field and density functional theory calculation, AIP Conf. Proc. 1554 (2013) 214-217.

DOI: 10.1063/1.4820323

Google Scholar

[23] B. Adiperdana, E. Suprayoga, N. Adam, S.S. Mohd-Tajudin, A.F. Rozlan, S. Sulaiman, M. I. Mohamed-Ibrahim, T. Kawamata, T. Adachi, I.A. Dharmawan, R.E. Siregar, Y. Koike, I. Watanabe, An effect of the supercell calculation on muon positions and local deformations of crystal structure in La2CuO4, J. Phys. Conf. Ser. 551 (2014) 012051.

DOI: 10.1088/1742-6596/551/1/012051

Google Scholar

[24] B. Adiperdana, Risdiana, μSR spectrum reconstruction using monte carlo approach: A preliminary study, Mat. Sci. Forum 966 (2019) 483-488.

DOI: 10.4028/www.scientific.net/msf.966.483

Google Scholar

[25] A.F. Rozlan, S. Sulaiman, M.I. Mohamed-Ibrahim, I. Watanabe, Electronic structure of muonated La2CuO4, Mat. Sci. Forum 827 (2015) 240-242.

DOI: 10.4028/www.scientific.net/msf.827.240

Google Scholar

[26] T. Lancaster, R.C. Williams, I.O. Thomas, F. Xiao, F.L. Pratt, S.J. Blundell, J.C. Loudon, T. Hesjedal, S.J. Clark, P.D. Hatton, M.C. Hatnean, D.S. Keeble, G. Balakrishnan, Transverse field muon-spin rotation signature of the skyrmion lattice phase in Cu2OSeO3, Phys. Rev. B 91 (2015) 224408.

DOI: 10.1103/physrevb.91.224408

Google Scholar

[27] P.G. Radaelli, D.G. Hinks, A.W. Mitchell, B.A. Hunter, J.L. Wagner, B. Dabrowski, K.G. Vandervoort, H.K. Viswanathan, J.D. Jorgensen, Structural and superconducting properties of La2-xSrxCuO4 as function of Sr content. Phys. Rev B 49 (1994) 4163-4175.

Google Scholar

[28] ELK 6.3.02 code http://elk.sourceforge.net.

Google Scholar

[29] D.J. Singh, Planewaves, Pseudopotentials and the LAPW Method, Kluwer Academic Publishers, Boston, (1994).

Google Scholar

[30] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Application of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992) 6671-6687.

DOI: 10.1103/physrevb.46.6671

Google Scholar