[1]
J. He, K. Zhang, S. Wu, X. Cai, K. Chen, Y. Li, B. Sun, Y. Jia, F. Meng, Z. Jin, L. Kong, J. Liu, Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water, J. Hazard. Mater. 303 (2015) 119-130.
DOI: 10.1016/j.jhazmat.2015.10.028
Google Scholar
[2]
K. Suchanek, A. Bartkowiak, M. Perzanowski, M. Marszałek, M. Sowa, W. Simka, Electrochemical properties and bioactivity of hydroxyapatite coatings prepared by MEA/EDTA double-regulated hydrothermal synthesis, Electrochim. Acta. 298 (2019) 685–693.
DOI: 10.1016/j.electacta.2018.12.140
Google Scholar
[3]
R.U. Mene, M.P. Mahabole, R.S. Khairnar, Surface modified hydroxyapatite thick films for CO2 gas sensing application: Effect of swift heavy ion irradiation, Radiat. Phys. Chem. 80 (2011) 682–687.
DOI: 10.1016/j.radphyschem.2011.02.002
Google Scholar
[4]
M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater. 9 (2013) 7591–7621.
DOI: 10.1016/j.actbio.2013.04.012
Google Scholar
[5]
N. Akbar, A.P.A Mustari, New chemicals and routes for the preparation of gelatin/HA composites using the wet precipitation method, J. Kimia Sains dan Aplikasi 23 (2020) 46-50.
DOI: 10.14710/jksa.23.2.46-50
Google Scholar
[6]
E.M. Rivera, M. Araiza, W. Brostow, V.M. Castano, J.R. Diaz-Estrada, R. Hernandez, J.R. Rodriguez, Synthesis of hydroxyapatite from eggshells, Mater. Lett. 41 (1999) 128–134.
DOI: 10.1016/s0167-577x(99)00118-4
Google Scholar
[7]
M.T. Hincke, et a. The eggshel; structure, composition and mineralization, Bioscience 17 (2012) 1266–1280.
Google Scholar
[8]
S.C. Wu, H.K. Tsou, H.C. Hsu, S.K. Hsu, S.P. Liou, W.F. Ho, A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite, Ceram. Int. 39 (2013) 8183–8188.
DOI: 10.1016/j.ceramint.2013.03.094
Google Scholar
[9]
H. Nosrati et.al, In situ synthesis of three dimentional graphene-hydroxyapatite nano powder via hydrothermal process, Mater. Chem. Phys. 222 (2020) 221–225.
Google Scholar
[10]
V. Rodríguez-Lugo, E. Salinas-Rodríguez, R.A. Vázquez, K. Alemán, A.L. Rivera, Hydroxyapatite synthesis from a starfish and β-tricalcium phosphate using a hydrothermal method, RSC Adv. 7 (2017) 7631–7639.
DOI: 10.1039/c6ra26907a
Google Scholar
[11]
A.R. Noviyanti et al. A novel hydrothermal synthesis of nanohydroxyapatite from eggshell-calcium-oxide precursors, Heliyon (2020) (in preparation).
DOI: 10.1016/j.heliyon.2020.e03655
Google Scholar
[12]
N.K.V. Nadimpalli, R. Bandyopadhyaya, V. Runkana, Thermodynamic analysis of hydrothermal synthesis of nanoparticles, Fluid Phase Equilib. 456 (2018) 33–45.
DOI: 10.1016/j.fluid.2017.10.002
Google Scholar
[13]
V. Rodríguez-Lugo, T.V.K. Karthik, D. M. Anaya, E.R. Rosas, L.S.V. Ceron, M.I.R. Valderrama, E.S. Rodriguez, Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: Effect of pH and sintering temperature on structural and morphological properties, R. Soc. Open Sci. 5 (2018) 1-14.
DOI: 10.1098/rsos.180962
Google Scholar
[14]
J. Liu, X. Ye, H. Wang, M. Zhu, B. Wang, H. Yan, The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method, Ceram. Int. 29 (2003) 629–633.
DOI: 10.1016/s0272-8842(02)00210-9
Google Scholar