[1]
T.T. Nguyen, M. Patel, D.K. Ban, J. Kim, Vertically trigonal WS2 layer embedded heterostructure for enhanced ultraviolet–visible photodetector, J. Alloys Compd. 768 (2018) 143–149.
DOI: 10.1016/j.jallcom.2018.07.164
Google Scholar
[2]
U. Krishnan, M. Kaur, K. Singh, M. Kumar, A. Kumar, A synoptic review of MoS2 : Synthesis to applications, Superlattices Microstruct. 128 (2019) 274–297.
DOI: 10.1016/j.spmi.2019.02.005
Google Scholar
[3]
J. Kallioinen, M.R. Hassan, G.S. Paraoanu, J. Korppi-Tommola, Dye-sensitized nanostructured TiO2 film based photoconductor, J. Photochem. Photobiol. A Chem. 195 (2008) 352–356.
DOI: 10.1016/j.jphotochem.2007.11.001
Google Scholar
[4]
S. Krishna, N. Aggarwal, A. Gundimeda, A. Sharma, S. Husale, K.K. Maurya, G. Gupta, Correlation of donor-acceptor pair emission on the performance of GaN-based UV photodetector, Mater. Sci. Semicond. Process. 98 (2019) 59–64.
DOI: 10.1016/j.mssp.2019.03.009
Google Scholar
[5]
M. Kumar, V. Bhatt, A.C. Abhyankar, J. Kim, A. Kumar, J.H. Yun, Modulation of structural properties of Sn doped ZnO for UV photoconductors, Sensors Actuators, A Phys. 270 (2018) 118–126.
DOI: 10.1016/j.sna.2017.12.045
Google Scholar
[6]
A.A. Abuelsamen, S. Mahmud, A. Seeni, N.H.M. Kaus, O.F. Farhat, Effects of precursor concentrations on the optical and morphological properties of ZnO nanorods on glass substrate for UV photodetector, Superlattices Microstruct. 111 (2017) 536–545.
DOI: 10.1016/j.spmi.2017.07.007
Google Scholar
[7]
O. Bazta, A. Urbieta, J. Piqueras, P. Fernández, M. Addou, J.J. Calvino, A.B. Hungría, Influence of yttrium doping on the structural, morphological and optical properties of nanostructured ZnO thin films grown by spray pyrolysis, Ceram. Int. 45 (2019) 6842–6852.
DOI: 10.1016/j.ceramint.2018.12.178
Google Scholar
[8]
S.V. Mohite, K.Y. Rajpure, Synthesis and characterization of Sb doped ZnO thin films for photodetector application, Opt. Mater. 36 (2014) 833–838.
DOI: 10.1016/j.optmat.2013.12.007
Google Scholar
[9]
R. Khan, P. Uthirakumar, T.H. Kim, I.H. Lee, Enhanced photocurrent performance of partially decorated Au nanoparticles on ZnO nanorods based UV photodetector, Mater. Res. Bull. 115 (2019) 176–181.
DOI: 10.1016/j.materresbull.2019.03.017
Google Scholar
[10]
Z. Bai, X. Yan, X. Chen, H. Liu, Y. Shen, Y. Zhang, ZnO nanowire array ultraviolet photodetectors with self-powered properties, Curr. Appl. Phys. 13 (2013) 165–169.
DOI: 10.1016/j.cap.2012.07.005
Google Scholar
[11]
J. Martinez, A. Montalibet, E. McAdams, M. Faivre, R. Ferrigno, Comparison of ITO and IrOx-Modified ITO Interdigitated Electrodes for Electrical Cell-Substrate Impedance Sensing (ECIS) Applications, Proceedings. 1 (2017) 532.
DOI: 10.3390/proceedings1040532
Google Scholar
[12]
S.K. Shaikh, V. V. Ganbavle, S. V. Mohite, K.Y. Rajpure, Chemical synthesis of pinecone like ZnO films for UV photodetector applications, Thin Solid Films. 642 (2017) 232–240.
DOI: 10.1016/j.tsf.2017.09.043
Google Scholar
[13]
M. Zheng, P. Gui, X. Wang, G. Zhang, J. Wan, H. Zhang, G. Fang, H. Wu, Q. Lin, C. Liu, ZnO ultraviolet photodetectors with an extremely high detectivity and short response time, Appl. Surf. Sci. 481 (2019) 437–442.
DOI: 10.1016/j.apsusc.2019.03.110
Google Scholar
[14]
Z. Ke, Z. Yang, M. Wang, M. Cao, Z. Sun, J. Shao, Low temperature annealed ZnO film UV photodetector with fast photoresponse, Sensors Actuators, A Phys. 253 (2017) 173–180.
DOI: 10.1016/j.sna.2016.07.026
Google Scholar
[15]
V.S. Rana, J.K. Rajput, T.K. Pathak, L.P. Purohit, Multilayer MgZnO/ZnO thin films for UV photodetectors, J. Alloys Compd. 764 (2018) 724–729.
DOI: 10.1016/j.jallcom.2018.06.139
Google Scholar
[16]
Q. Xu, R. Hong, Q. Cheng, X. Chen, F. Zhang, J. Feng, Z. Wu, Solution growth of crystalline ZnO thin film and its photodetector application, Phys. E Low-Dimensional Syst. Nanostructures. 104 (2018) 16–21.
DOI: 10.1016/j.physe.2018.06.031
Google Scholar
[17]
T. Yang, B. Sun, L. Ni, X. Wei, T. Guo, Z. Shi, F. Han, L. Duan, The mechanism of photocurrent enhancement of ZnO ultraviolet photodetector by reduced graphene oxide, Curr. Appl. Phys. 18 (2018) 859–863.
DOI: 10.1016/j.cap.2018.04.010
Google Scholar
[18]
A. Khayatian, V. Asgari, A. Ramazani, S.F. Akhtarianfar, M.A. Kashi, S. Safa, Diameter-controlled synthesis of ZnO nanorods on Fe-doped ZnO seed layer and enhanced photodetection performance, Mater. Res. Bull. 94 (2017) 77–84.
DOI: 10.1016/j.materresbull.2017.05.023
Google Scholar
[19]
N.A. Putri, V. Fauzia, S. Iwan, L. Roza, A.A. Umar, S. Budi, Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates, Appl. Surf. Sci. 439 (2018) 285–297.
DOI: 10.1016/j.apsusc.2017.12.246
Google Scholar
[20]
K. Nadarajah, C. Yern Chee, C.Y. Tan, Influence of annealing on properties of spray deposited ZnO thin films, J. Nanomater. 2013 (2013).
DOI: 10.1155/2013/146382
Google Scholar
[21]
C. Ling, T. Guo, M. Shan, L. Zhao, H. Sui, S. Ma, Q. Xue, Oxygen vacancies enhanced photoresponsive performance of ZnO nanoparticles thin film/Si heterojunctions for ultraviolet/infrared photodetector, J. Alloys Compd. 797 (2019) 1224–1231.
DOI: 10.1016/j.jallcom.2019.05.150
Google Scholar
[22]
M.A. Shehzad, S. Hussain, M.F. Khan, J. Eom, J. Jung, Y. Seo, A progressive route for tailoring electrical transport in MoS2, Nano Res. 9 (2016) 380–391.
DOI: 10.1007/s12274-015-0918-4
Google Scholar
[23]
G. Nazir, M.F. Khan, I. Akhtar, K. Akbar, P. Gautam, H. Noh, Y. Seo, S.H. Chun, J. Eom, Enhanced photoresponse of ZnO quantum dot-decorated MoS2 thin films, RSC Adv. 7 (2017) 16890–16900.
DOI: 10.1039/c7ra01222e
Google Scholar
[24]
M. Husham, M.N. Hamidon, S. Paiman, A.A. Abuelsamen, O.F. Farhat, A.A. Al-Dulaimi, Synthesis of ZnO nanorods by microwave-assisted chemical-bath deposition for highly sensitive self-powered UV detection application, Sensors Actuators, A Phys. 263 (2017) 166–173.
DOI: 10.1016/j.sna.2017.05.041
Google Scholar
[25]
P.S. Shewale, N.K. Lee, S.H. Lee, K.Y. Kang, Y.S. Yu, Ti doped ZnO thin film based UV photodetector: Fabrication and characterization, J. Alloys Compd. 624 (2015) 251–257.
DOI: 10.1016/j.jallcom.2014.10.071
Google Scholar