Basis Set Effects in Density Functional Theory Calculation of Muoniated Cytosine Nucleobase

Article Preview

Abstract:

The Density Functional Theory method was employed to investigate the electronic structure and muonium hyperfine interaction of muonium trapped near carbon atom labelled as '5' in cytosine nucleobase. Eighteen different basis sets in combination with B3LYP functional were examined in geometry optimization calculations on the muoniated radical. There are significant quantitative differences in the calculated total energy. The employment of basis set that does not include polarization function produces an optimized structure with high total energy. The 6-311++G(d,p) basis set yielded the lowest total energy as compared to other basis sets. The bond order of muonium trapped at C5 atom is in the range of 0.841 to 0.862. The 6-31G basis set produced the muonium Fermi contact coupling constant that is the closest to the experimental value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

282-287

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Nagamine, Introductory Muon Science, Cambridge University Press, (2003).

Google Scholar

[2] D.C. Walker, Muon and Muonium Chemistry, Cambridge University Press, (1983).

Google Scholar

[3] S. Han, K. Wang, M. Willis, L. Nuccio, F.L. Pratt, J.S. Lord, JK.J. Thorley, J. Anthony, A.J. Drew, S. Zhang, L. Schulz, Muonium avoided level crossing measurement of electron spin relaxation rate in a series of substituted anthradithiophene based molecules, Synth. Metals 208 (2015) 39-42.

DOI: 10.1016/j.synthmet.2015.04.020

Google Scholar

[4] J.S. Möller, P. Bonfà, D. Ceresoli, F. Bernardini, S.J. Blundell, T. Lancaster, R. De Renzi, N. Marzari, I. Watanabe, S. Sulaiman, M.I. Mohamed-Ibrahim, Playing quantum hide-and-seek with the muon: localizing muon stopping sites, Phys. Scr. 88 (2013) 068510.

DOI: 10.1088/0031-8949/88/06/068510

Google Scholar

[5] S. Sulaiman, First Principles Investigation of Electronic Structures and Hyperfine Properties of Semiconductors and High Critical Transition Temperature Superconductors, PhD Thesis, (1992).

Google Scholar

[6] W. Weltner, Magnetic Atoms and Molecules, Dover Publications, (1989).

Google Scholar

[7] K.V. Berezin, V.V. Nechaev, Comparison of theoretical methods and basis sets for ab initio and DFT calculations of the structure and frequencies of normal vibrations of polyatomic molecules, J. Appl. Spectrosc., 71 (2004) 164-172.

DOI: 10.1023/b:japs.0000032870.02752.5e

Google Scholar

[8] L. Hermosilla, P. Calle, J.M. García de La Vega, C. Sieiro, Density functional theory predictions of isotropic hyperfine coupling constants, J. Phys. Chem. A 109 (2005) 1114-1124.

DOI: 10.1021/jp0466901

Google Scholar

[9] B. O. Milhoj, E.D. Hedegard, S.P.A. Sauer, On the use of locally dense basis sets in the calculation of EPR hyperfine couplings: a study on model systems for bio-inorganic Fe and Co complexes, Curr. Inorg. Chem. 3 (2013) 270-283.

DOI: 10.2174/1877944103666140110225818

Google Scholar

[10] W.N. Zaharim, S. Sulaiman, S.N. Abu Bakar, N.E. Ismail, H. Rozak, I. Watanabe, The effects of split valence basis sets on muon hyperfine interaction in guanine nucleobase and nucleotide structures, Mater. Sci. Forum 966 (2019) 222-228.

DOI: 10.4028/www.scientific.net/msf.966.222

Google Scholar

[11] P.L. Toh, S. Sulaiman, M. Ibrahim, M. Ismail, L.S. Ang, Density functional theory studies of electronic structures and hyperfine interactions of muonium in imidazole, Appl. Mech. Mater. 749 (2015) 134-138.

DOI: 10.4028/www.scientific.net/amm.749.134

Google Scholar

[12] P.L. Hubbard, V.S. Oganesyan, N. Sulaimanov, J.N. Butt, U.A. Jayasooriya, Avoided level crossing muon spectroscopy of free radicals formed by muonium addition to the constituents of DNA, J. Phys. Chem. A 108 (2004) 9302-9309.

DOI: 10.1021/jp0475335

Google Scholar

[13] I. McKenzie, Hydrogen-atom addition to nucleobases in the solid state: characterization of the corresponding muoniated radicals using μSR, J. Phys. Chem. B 123 (2019) 4540-4549.

DOI: 10.1021/acs.jpcb.9b02930

Google Scholar

[14] P.L. Hubbard, A. Tani, V.S. Oganesyan, J.N. Butt, S.P. Cottrell, U.A. Jayasooriya, Different responses to muon implantation in single-and double-stranded DNA, Physica B Condens. Matter. 374 (2006) 437-440.

DOI: 10.1016/j.physb.2005.11.126

Google Scholar

[15] J.A. Plumley, J.J. Dannenberg, A comparison of the behavior of functional/basis set combinations for hydrogen-bonding in the water dimer with emphasis on basis set superposition error, J. Comput. Chem. 32 (2011) 1519-1527.

DOI: 10.1002/jcc.21729

Google Scholar

[16] Y. Maeda, A. Okamoto, Y. Hoshiba, T. Tsukamoto, Y. Ishikawa, N. Kurita, Effect of hydration on electrical conductivity of DNA duplex: Green's function study combined with DFT, ‎Comput. Mater. Sci. 53 (2012) 314-320.

DOI: 10.1016/j.commatsci.2011.09.020

Google Scholar

[17] T. Izzati, S. Sulaiman, M.I. Mohamed-Ibrahim, Density Functional Theory: Hybrid functional study of tetraphenyltin, Sci. Int. 23 (2011) 259-261.

Google Scholar

[18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji X. Li, X., Gaussian 16, revision A. 03. Gaussian Inc., Wallingford CT, (2016).

Google Scholar