Nanoparticles Size in Fe73.5Cu1Mo3Si13.5B9 Melt

Article Preview

Abstract:

The size of the nanoparticles participating in the viscous flow and the diffusion coefficient were calculated using statistical mechanical theory of absolute reaction rates and the Arrhenius equation. As experimental data, temperature dependence of the kinematic viscosity and density of Fe73.5Cu1Mo3Si13.5B9 melt was used. At a temperature of 1600 K, after the melt is overheated above the critical temperature Tk = 1770 K, the nanoparticles size decreases from 0.92 to 0.47 nm, and the diffusion coefficient increases from 2.4·10-10 to 4.5·10-10 m2·s-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yoshizawa, S. Oguma and K. Yamauchi: J. Appl. Phys. Vol. 64 (1988), p.6044.

Google Scholar

[2] Y. Yoshizawa and K. Yamauchi: Mater. Sci. Eng. A Vol. 133 (1991), p.176.

Google Scholar

[3] K. Hono, A. Inoue and T. Sakurai: Appl. Phys. Lett. Vol. 58 (1991), p.2180.

Google Scholar

[4] A.L. Beľtyukov, A.I. Shishmarin and V.I. Laďyanov: High Temperature Vol. 53 (2015), p.302.

Google Scholar

[5] V. Tsepelev, Yu. Starodubtsev and V. Konashkov: EPJ Web Conf. Vol 151 (2017), 04006.

Google Scholar

[6] P.S. Popel and V.E. Sidorov: Mater. Sci. Eng. A Vol Vol. 226–228 (1997), p.23.

Google Scholar

[7] U. Dahlborg, M. Calvo-Dahlborg, P.S. Popel and V.E. Sidorov: Eur. Phys. J. B Vol. 14 (2000), p.639.

DOI: 10.1007/s100510051073

Google Scholar

[8] P.S. Popel, M. Calvo-Dahlborg and U. Dahlborg: J. Non-Cryst Solids Vol. 353 (2007), p.3243.

DOI: 10.1016/j.jnoncrysol.2007.05.179

Google Scholar

[9] M. Calvo-Dahlborg, P.S. Popel, M.J. Kramer, M. Besser, J.R. Morris and U. Dahlborg: J. Alloys Comp. Vol. 550 (2013), p.9.

DOI: 10.1016/j.jallcom.2012.09.086

Google Scholar

[10] P.S. Popel. U. Dahlborg and M. Calvo-Dahlborg: IOP Conf. Ser.: Mater. Sci. Eng. 2017. Vol. 192 (2017) 012012.

DOI: 10.1088/1757-899x/192/1/012012

Google Scholar

[11] O.A. Chikova, V.S. Tepelev and O.P. Moskovskikh: Russ. J. Phys. Chem. A Vol. 91 (2017), p.979.

Google Scholar

[12] B. Dong, S. Zhou, J. Qin, S. Pan and Z. Li: Chin. Mater. Res. Soc. Vol. 23 (2013), p.216.

Google Scholar

[13] S. Zhou, B. Dong, R. Xiang, G. Zhang, J. Qin and X. Bian: Prog. Nat. Sci.: Mater. Inter. Vol. 25 (2015), p.137.

Google Scholar

[14] V. Tsepelev, V. Konashkov, Y. Starodubtsev, Y. Belozerov and D. Gaipisherov: IEEE Trans. Magn. Vol. 48 (2012), p.1327.

DOI: 10.1109/tmag.2011.2175209

Google Scholar

[15] S. Glasstone, K. Laidler and H. Eyring: The theory of rate processes. The kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena (McGraw Hill, 1941).

Google Scholar

[16] J. Frenkel: Kinetic theory of liquids (Сlaredon Press, 1946).

Google Scholar

[17] V. Tsepelev, Yu. Starodubtsev, V. Konashkov, K. Wu and R. Wang: J. Alloys Comp. Vol. 790 (2019), p.547.

Google Scholar

[18] A.I. Batschinski: Z. Phys. Chem. Vol .84 (1913), p.643.

Google Scholar

[19] B.A. Baum: Metal liquids (Nauka, Moscow, 1979).

Google Scholar