[1]
Qiudong Li, Jun Shen⁎, Ling Qin, Yilong Xiong, Xiao'an Yue. Effect of traveling magnetic field on freckle formation in directionally solidified CMSX-4 superalloy[J]. Journal of Materials Processing Tech, 2019, 274: 116308.
DOI: 10.1016/j.jmatprotec.2019.116308
Google Scholar
[2]
Weidong Xuan, Lufa Du, Yu Han, Wei Shao, Huaiwei Zhang, Jiang Wang, Yunbo Zhong, Zhongming Ren. Investigation on microstructure and creep properties of nickel based single crystal superalloys PWA1483 during heat treatment under an alternating magnetic field[J]. Materials Science & Engineering A, 2019, 762: 138087.
DOI: 10.1016/j.msea.2019.138087
Google Scholar
[3]
Carla Meid, Anne Dennstedt, Markus Ramsperger, Julian Pistor, Benjamin Ruttert, Inmaculada Lopez-Galilea, Werner Theisen, Carolin Körner, Marion Bartsch. Effect of heat treatment on the high temperature fatigue life of single crystalline nickel base superalloy additively manufactured by means of selective electron beam melting[J]. Scripta Materialia, 2019, 168: 124–128.
DOI: 10.1016/j.scriptamat.2019.05.002
Google Scholar
[4]
D. Bürgera, A.B. Parsa, M. Ramsperger, C. Körner, G. Eggeler. Creep properties of single crystal Ni-base superalloys (SX): A comparison between conventionally cast and additive manufactured CMSX-4 materials[J]. Materials Science & Engineering A, 2019, 762: 138098.
DOI: 10.1016/j.msea.2019.138098
Google Scholar
[5]
Horst O M, Ruttert B, Bürger, D, et al. On the rejuvenation of crept Ni-Base single crystal superalloys (SX) by hot isostatic pressing (HIP)[J]. Materials Science and Engineering: A, 2019,758: 202-214.
DOI: 10.1016/j.msea.2019.04.078
Google Scholar
[6]
Wang Cheng, Li Qiuliang, Zhou, Xin, et al.Contrastive Studies between Laser Repairing and Plasma Arc Repairing on Single-Crystal Ni-Based Superalloy. Materials. (2019).
DOI: 10.3390/ma12071172
Google Scholar
[7]
Ying Wei-Sheng, Han Fu-zhu, Wang Jun-Hua. Oxidation behavior and control method in laser solid forming of Rene 104 superalloy. Journal of Laser Applications. 2019, 31(3).
DOI: 10.2351/1.5095187
Google Scholar
[8]
Pereira A, Van Hooff C, Pereira M, et al. Laser metal deposition strategies for repairing flat and notched substrates made of Ni-based single crystalline superalloys[J]. Journal of Laser Applications, 2019, 31(2).
DOI: 10.2351/1.5096134
Google Scholar
[9]
Ye Y, Zou G, Long W, et al. Diffusion brazing repair of IN738 superalloy with crack-like defect: microstructure and tensile properties at high temperatures[J]. Science and Technology of Welding and Joining, 2018,24(1):52-62.
DOI: 10.1080/13621718.2018.1477546
Google Scholar
[10]
Kalfhaus T, Schneider M, Ruttert B, et al. Repair of Ni-based single-crystal superalloys using vacuum plasma spray[J]. Materials & Design, 2019,168.
DOI: 10.1016/j.matdes.2019.107656
Google Scholar
[11]
Farzadi A, Esmaeili H, Mirsalehi S E. Transient liquid phase bonding of Inconel 617 superalloy: effect of filler metal type and bonding time[J]. Welding in the World,2019,63(1):191-200.
DOI: 10.1007/s40194-018-0662-y
Google Scholar
[12]
Yan G, Bhowmik A, Nagarajan B, et al. Post-bond heat treatment effects on the wide gap transient liquid phase bonding of Inconel 718 with BNi-2 paste filler metal[J]. Materials Science and Engineering: A,2019,766.
DOI: 10.1016/j.msea.2019.138267
Google Scholar
[13]
Estrada Rodas E A, Neu R W. Crystal viscoplasticity model for the creep-fatigue interactions in single-crystal Ni-base superalloy CMSX-8[J]. International Journal of Plasticity, 2018,100:14-33.
DOI: 10.1016/j.ijplas.2017.08.008
Google Scholar
[14]
Fu Chao, Chen Ya-dong, Yuan Xiao-fei, et al. A modified θ projection model for constant load creep curves-I. Introduction of the model [J]. Journal of Materials Science & Technology, 2019,35(1):223-230.
DOI: 10.1016/j.jmst.2018.09.024
Google Scholar
[15]
Fu Chao, Chen Ya-dong, Yuan Xiao-fei, et al. A modified θ projection model for constant load creep curves-II. Application of creep life prediction[J]. Journal of Materials Science & Technology,2019,35(4): 687-694.
DOI: 10.1016/j.jmst.2018.09.035
Google Scholar
[16]
Wang R, Zhang B, Hu D, et al. A critical-plane-based thermomechanical fatigue lifetime prediction model and its application in nickel-based single-crystal turbine blades[J]. Materials at High Temperatures, 2018,36(4):1-10.
DOI: 10.1080/09603409.2018.1556435
Google Scholar
[17]
Liang Jie-cun, Wang Zhen, Xie Hong-fu, et al. In situ scanning electron microscopy analysis of effect of temperature on small fatigue crack growth behavior of nickel-based single-crystal superalloy[J]. International Journal of Fatigue,2019,128.
DOI: 10.1016/j.ijfatigue.2019.105195
Google Scholar
[18]
Special application guide [EB/OL] http://www.most.gov.cn/mostinfo/xinxifenlei/ fgzc/gfxwj/gfxwj 2016/201610/ W020161013492763750681. pdf.
Google Scholar
[19]
WANG Shao-qing, YE Heng-qiang. First-principles calculation of crystalline materials genome[J]. Science Bulletin, 2013, 58(35): 3623−3632.
Google Scholar
[20]
Gorgannejad S, Gahrooei M R, Paynabar K, et al. Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression[J]. Acta Materialia, 2019, 165: 259-269.
DOI: 10.1016/j.actamat.2018.11.047
Google Scholar
[21]
Kong D, Dong C, Ni X, et al. High-throughput fabrication of nickel-based alloys with different Nb contents via a dual-feed additive manufacturing system: Effect of Nb content on microstructural and mechanical properties[J]. Journal of Alloys and Compounds, 2019, 785: 826-837.
DOI: 10.1016/j.jallcom.2019.01.263
Google Scholar