[1]
R. J. Zdrahala, Thermoplastic starch revisited. Structure/property relationship for dialed-in, biodegradability, Macromolecular Symposia, 123 (1997) 113–121.
DOI: 10.1002/masy.19971230112
Google Scholar
[2]
H. L. Abd El-Mohdy, E. A. Hegazy, E. M. El-Nesr, and M. A. El-Wahab, Synthesis, characterization and properties of radiation-induced Starch/(EG-co-MAA) hydrogels, Arabian Journal of Chemistry, 9 (2006) S1627–S1635.
DOI: 10.1016/j.arabjc.2012.04.022
Google Scholar
[3]
E. Chabrat, H. Abdillahi, A. Rouilly, and L. Rigal, Influence of citric acid and water on thermoplastic wheat flour/poly(lactic acid) blends. I: Thermal, mechanical and morphological properties, Industrial Crops and Products, 37 (2012) 238–246.
DOI: 10.1016/j.indcrop.2011.11.034
Google Scholar
[4]
S. Li, J. Xia, Y. Xu, X. Yang, W. Mao, and K. Huang, Preparation and characterization of acorn starch/poly(lactic acid) composites modified with functionalized vegetable oil derivates, Carbohydrate Polymers, 142 (2006) 250–258.
DOI: 10.1016/j.carbpol.2016.01.031
Google Scholar
[5]
T. Ke, S. X. Sun, and P. Seib, Blending of poly(lactic acid) and starches containing varying amylose content, Journal of Applied Polymer Science, 89 (2003) 3639–3646.
DOI: 10.1002/app.12617
Google Scholar
[6]
D. L. M. Costa, Produção por extrusão de filmes de alto teor de amido termoplástico com poli (butileno adipato co-tereftalato) (PBAT). Dissertação de Mestrado (Mestrado em Ciência de Alimentos). Universidade Estadual de Londrina, Londrina. (2008).
DOI: 10.47749/t/unicamp.2019.1129409
Google Scholar
[7]
J. Ren, H. Fu, T. Ren, and W. Yuan, Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate), Carbohydrate Polymers, 77 (2009) 576–582.
DOI: 10.1016/j.carbpol.2009.01.024
Google Scholar
[8]
M. A. Shirai, J. B. Olivato, P. S. Garcia, C. M. O. Müller, M. V. E. Grossmann, and F. Yamashita, Thermoplastic starch/polyester films: Effects of extrusion process and poly (lactic acid) addition, Materials Science and Engineering: C, 33 (2013) 4112–4117.
DOI: 10.1016/j.msec.2013.05.054
Google Scholar
[9]
W. Phetwarotai and D. Aht-Ong, Reactive Compatibilization of Polylactide, Thermoplastic Starch and Poly(butylene adipate-co-terephthalate) Biodegradable Ternary Blend Films, Materials Science Forum, 695 (2011) 178–181.
DOI: 10.4028/www.scientific.net/msf.695.178
Google Scholar
[10]
I. Bher, Uysal Unalan, R. Auras, M. Rubino, and C. Schvezov, Toughening of Poly(lactic acid) and Thermoplastic Cassava Starch Reactive Blends Using Graphene Nanoplatelets, Polymers, 10 (2018) 95.
DOI: 10.3390/polym10010095
Google Scholar
[11]
A. Winotapun et al., Development of multilayer films with improved aroma barrier properties for durian packaging application, Packaging Technology and Science, 32 (2019) 405–418.
DOI: 10.1002/pts.2452
Google Scholar
[12]
V. M. Pathak and Navneet, Review on the current status of polymer degradation: a microbial approach, Bioresources and Bioprocessing, 4. (2017).
DOI: 10.1186/s40643-017-0145-9
Google Scholar