A Comparative Study of Photodegradation Behavior Sodium Niobate Nanowires and Microcubes

Article Preview

Abstract:

Sodium niobate catalysts with different morphologies of nanowires and microcubes have been prepared by hydrothermal method. The photocatalytic performance of NaNbO3 nanowires and microcubes was evaluated by degradation of rhodamine B (RhB) and cationic red X-GRL (CRX). The photodegradation reaction of organic dyes is shown to be kinetically first-order. The as-prepared NaNbO3 nanowires exhibit higher photo-catalytic activity for organic dyes degradation than NaNbO3 microcubes, which is attributed to the larger specific surface area and ferroelectric phase structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

221-227

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yang Z, Du H, Qu S, et al. Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics[J]. Journal of materials chemistry A, 2016, 4(36): 13778-13785.

DOI: 10.1039/c6ta04107h

Google Scholar

[2] Shao T, Du H, Ma H, et al. Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials[J]. Journal of Materials Chemistry A, 2017, 5(2): 554-563.

DOI: 10.1039/c6ta07803f

Google Scholar

[3] Zhou M, Liang R, Zhou Z, et al. Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12755-12765.

DOI: 10.1021/acssuschemeng.8b01926

Google Scholar

[4] Shimizu H, Guo H, Reyes-Lillo S E, et al. Lead-free antiferroelectric: x CaZrO 3-(1− x) NaNbO 3 system (0≤ x≤ 0.10)[J]. Dalton Transactions, 2015, 44(23): 10763-10772.

DOI: 10.1039/c4dt03919j

Google Scholar

[5] Cross E. Lead-free at last[J]. Nature, 2004, 432(7013): 24-25.

Google Scholar

[6] Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84-87.

DOI: 10.1038/nature03028

Google Scholar

[7] Bortolani F, del Campo A, Fernandez J F, et al. High strain in (K, Na) NbO3-based lead-free piezoelectric fibers[J]. Chemistry of Materials, 2014, 26(12): 3838-3848.

DOI: 10.1021/cm501538x

Google Scholar

[8] Zlotnik S, Tobaldi D M, Seabra P, et al. Alkali niobate and tantalate perovskites as alternative photocatalysts[J]. ChemPhysChem, 2016, 17(21): 3570-3575.

DOI: 10.1002/cphc.201600476

Google Scholar

[9] Saad Y, Álvarez-Serrano I, López M L, et al. Dielectric response and thermistor behavior of lead-free x NaNbO3-(1-x) BiFeO3 electroceramics[J]. Ceramics International, 2018, 44(15): 18560-18570.

DOI: 10.1016/j.ceramint.2018.07.078

Google Scholar

[10] You H, Wu Z, Wang L, et al. Highly efficient pyrocatalysis of pyroelectric NaNbO3 shape-controllable nanoparticles for room-temperature dye decomposition[J]. Chemosphere, 2018, 199: 531-537.

DOI: 10.1016/j.chemosphere.2018.02.059

Google Scholar

[11] Zhu K, Cao Y, Wang X, et al. Hydrothermal synthesis of sodium niobate with controllable shape and structure[J]. CrystEngComm, 2012, 14(2): 411-416.

DOI: 10.1039/c1ce06100c

Google Scholar

[12] Wang Z, Gao M, Li X, et al. Efficient adsorption of methylene blue from aqueous solution by graphene oxide modified persimmon tannins[J]. Materials Science and Engineering: C, 2020, 108: 110196.

DOI: 10.1016/j.msec.2019.110196

Google Scholar

[13] Torres N H, Souza B S, Ferreira L F R, et al. Real textile effluents treatment using coagulation/flocculation followed by electrochemical oxidation process and ecotoxicological assessment[J]. Chemosphere, 2019, 236: 124309.

DOI: 10.1016/j.chemosphere.2019.07.040

Google Scholar

[14] Semalti P, Sharma S N. Dye Sensitized Solar Cells (DSSCs) Electrolytes and Natural Photo-Sensitizers: A Review[J]. Journal of nanoscience and nanotechnology, 2020, 20(6): 3647-3658.

DOI: 10.1166/jnn.2020.17530

Google Scholar

[15] Singh S, Kumar V, Datta S, et al. Current advancement and future prospect of biosorbents for bioremediation[J]. Science of The Total Environment, 2019: 135895.

DOI: 10.1016/j.scitotenv.2019.135895

Google Scholar

[16] Gao T, Meng G, Wang Y, et al. Electrochemical synthesis of copper nanowires[J]. Journal of Physics-Condensed Matter, 2002, 14(3):355-363.

Google Scholar

[17] de Souza J C, da Silva B F, Morales D A, et al. Assessment of p-aminophenol oxidation by simulating the process of hair dyeing and occurrence in hair salon wastewater and drinking water from treatment plant[J]. Journal of Hazardous Materials, 2020, 387: 122000.

DOI: 10.1016/j.jhazmat.2019.122000

Google Scholar

[18] Manjunatha B, Han L, Kundapur R R, et al. Herbul black henna (hair dye) causes cardiovascular defects in zebrafish (Danio rerio) embryo model[J]. Environmental Science and Pollution Research, 2020: 1-10.

DOI: 10.1007/s11356-020-07762-z

Google Scholar

[19] Meisser S S, Altunbulakli C, Bandier J, et al. Skin barrier damage after exposure to para-phenylenediamine[J]. Journal of Allergy and Clinical Immunology, (2019).

Google Scholar

[20] Choudhary G. Human health perspectives on environmental exposure to benzidine: a review[J]. Chemosphere, 1996, 32(2): 267-291.

DOI: 10.1016/0045-6535(95)00338-x

Google Scholar

[21] Wang S, Wu Z, Chen J, et al. Lead-free sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation[J]. Ceramics International, 2019, 45(9): 11703-11708.

DOI: 10.1016/j.ceramint.2019.03.045

Google Scholar

[22] Liu Z, Ji M, Yang Q, et al. Silicone-oil-assisted synthesis of high-quality sodium niobate nanowires[J]. CrystEngComm, 2017, 19(26): 3553-3556.

DOI: 10.1039/c7ce00581d

Google Scholar

[23] Mishra S K, Mittal R, Pomjakushin V Y, et al. Phase stability and structural temperature dependence in sodium niobate: A high-resolution powder neutron diffraction study[J]. Physical Review B, 2011, 83(13): 134105.

DOI: 10.1103/physrevb.83.134105

Google Scholar

[24] Mishra S K, Choudhury N, Chaplot S L, et al. Competing antiferroelectric and ferroelectric interactions in Na Nb O 3: Neutron diffraction and theoretical studies[J]. Physical Review B, 2007, 76(2): 024110.

DOI: 10.1103/physrevb.76.024110

Google Scholar