[1]
Yang Z, Du H, Qu S, et al. Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics[J]. Journal of materials chemistry A, 2016, 4(36): 13778-13785.
DOI: 10.1039/c6ta04107h
Google Scholar
[2]
Shao T, Du H, Ma H, et al. Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials[J]. Journal of Materials Chemistry A, 2017, 5(2): 554-563.
DOI: 10.1039/c6ta07803f
Google Scholar
[3]
Zhou M, Liang R, Zhou Z, et al. Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12755-12765.
DOI: 10.1021/acssuschemeng.8b01926
Google Scholar
[4]
Shimizu H, Guo H, Reyes-Lillo S E, et al. Lead-free antiferroelectric: x CaZrO 3-(1− x) NaNbO 3 system (0≤ x≤ 0.10)[J]. Dalton Transactions, 2015, 44(23): 10763-10772.
DOI: 10.1039/c4dt03919j
Google Scholar
[5]
Cross E. Lead-free at last[J]. Nature, 2004, 432(7013): 24-25.
Google Scholar
[6]
Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84-87.
DOI: 10.1038/nature03028
Google Scholar
[7]
Bortolani F, del Campo A, Fernandez J F, et al. High strain in (K, Na) NbO3-based lead-free piezoelectric fibers[J]. Chemistry of Materials, 2014, 26(12): 3838-3848.
DOI: 10.1021/cm501538x
Google Scholar
[8]
Zlotnik S, Tobaldi D M, Seabra P, et al. Alkali niobate and tantalate perovskites as alternative photocatalysts[J]. ChemPhysChem, 2016, 17(21): 3570-3575.
DOI: 10.1002/cphc.201600476
Google Scholar
[9]
Saad Y, Álvarez-Serrano I, López M L, et al. Dielectric response and thermistor behavior of lead-free x NaNbO3-(1-x) BiFeO3 electroceramics[J]. Ceramics International, 2018, 44(15): 18560-18570.
DOI: 10.1016/j.ceramint.2018.07.078
Google Scholar
[10]
You H, Wu Z, Wang L, et al. Highly efficient pyrocatalysis of pyroelectric NaNbO3 shape-controllable nanoparticles for room-temperature dye decomposition[J]. Chemosphere, 2018, 199: 531-537.
DOI: 10.1016/j.chemosphere.2018.02.059
Google Scholar
[11]
Zhu K, Cao Y, Wang X, et al. Hydrothermal synthesis of sodium niobate with controllable shape and structure[J]. CrystEngComm, 2012, 14(2): 411-416.
DOI: 10.1039/c1ce06100c
Google Scholar
[12]
Wang Z, Gao M, Li X, et al. Efficient adsorption of methylene blue from aqueous solution by graphene oxide modified persimmon tannins[J]. Materials Science and Engineering: C, 2020, 108: 110196.
DOI: 10.1016/j.msec.2019.110196
Google Scholar
[13]
Torres N H, Souza B S, Ferreira L F R, et al. Real textile effluents treatment using coagulation/flocculation followed by electrochemical oxidation process and ecotoxicological assessment[J]. Chemosphere, 2019, 236: 124309.
DOI: 10.1016/j.chemosphere.2019.07.040
Google Scholar
[14]
Semalti P, Sharma S N. Dye Sensitized Solar Cells (DSSCs) Electrolytes and Natural Photo-Sensitizers: A Review[J]. Journal of nanoscience and nanotechnology, 2020, 20(6): 3647-3658.
DOI: 10.1166/jnn.2020.17530
Google Scholar
[15]
Singh S, Kumar V, Datta S, et al. Current advancement and future prospect of biosorbents for bioremediation[J]. Science of The Total Environment, 2019: 135895.
DOI: 10.1016/j.scitotenv.2019.135895
Google Scholar
[16]
Gao T, Meng G, Wang Y, et al. Electrochemical synthesis of copper nanowires[J]. Journal of Physics-Condensed Matter, 2002, 14(3):355-363.
Google Scholar
[17]
de Souza J C, da Silva B F, Morales D A, et al. Assessment of p-aminophenol oxidation by simulating the process of hair dyeing and occurrence in hair salon wastewater and drinking water from treatment plant[J]. Journal of Hazardous Materials, 2020, 387: 122000.
DOI: 10.1016/j.jhazmat.2019.122000
Google Scholar
[18]
Manjunatha B, Han L, Kundapur R R, et al. Herbul black henna (hair dye) causes cardiovascular defects in zebrafish (Danio rerio) embryo model[J]. Environmental Science and Pollution Research, 2020: 1-10.
DOI: 10.1007/s11356-020-07762-z
Google Scholar
[19]
Meisser S S, Altunbulakli C, Bandier J, et al. Skin barrier damage after exposure to para-phenylenediamine[J]. Journal of Allergy and Clinical Immunology, (2019).
Google Scholar
[20]
Choudhary G. Human health perspectives on environmental exposure to benzidine: a review[J]. Chemosphere, 1996, 32(2): 267-291.
DOI: 10.1016/0045-6535(95)00338-x
Google Scholar
[21]
Wang S, Wu Z, Chen J, et al. Lead-free sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation[J]. Ceramics International, 2019, 45(9): 11703-11708.
DOI: 10.1016/j.ceramint.2019.03.045
Google Scholar
[22]
Liu Z, Ji M, Yang Q, et al. Silicone-oil-assisted synthesis of high-quality sodium niobate nanowires[J]. CrystEngComm, 2017, 19(26): 3553-3556.
DOI: 10.1039/c7ce00581d
Google Scholar
[23]
Mishra S K, Mittal R, Pomjakushin V Y, et al. Phase stability and structural temperature dependence in sodium niobate: A high-resolution powder neutron diffraction study[J]. Physical Review B, 2011, 83(13): 134105.
DOI: 10.1103/physrevb.83.134105
Google Scholar
[24]
Mishra S K, Choudhury N, Chaplot S L, et al. Competing antiferroelectric and ferroelectric interactions in Na Nb O 3: Neutron diffraction and theoretical studies[J]. Physical Review B, 2007, 76(2): 024110.
DOI: 10.1103/physrevb.76.024110
Google Scholar