First-Principles Study of Effects of Combined Ti Supervalent Cations and Lithium Ion Vacancies Doping on Crystal and Electronic Structures and Conductivity in LiFePO4

Article Preview

Abstract:

Olivine-type LiFePO4 is widely considered as a cathode for lithium-ion batteries owing to its environmental friendliness and low-cost, yet its applicability in the pristine state is limited due to poor electronic and ionic conductivity. To investigate the conductivity enhancement of LiFePO4, first-principles method under the GGA+U framework is implemented to study effects of doping with Ti4+ at Fe2+ sites under the lithium-deficient environment. LiFePO4 crystal and electronic structures as well as conductivity are investigated. Ti doping creates the impurity states at the acceptor level, which are normally degenerate states, but split into multiple states by the crystal field splitting. Doping under the lithium-deficient environment induces small hole polarons localizing at the Fe atoms and creates defect states located in the intermediate band. Both phenomena combine to facilitate charge carrier hopping. The climbing-image nudge elastic band (cNEB) calculation shows that Li hopping can be promoted by doping with high Ti concentration. This co-doping mechanism therefore can enhance both the electronic and ionic conductivities, which can be beneficial benchmark for cathode-material synthesis in the future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

277-283

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144 (1997) 1188-1194.

DOI: 10.1149/1.1837571

Google Scholar

[2] J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature. 414 (2001) 359–367.

DOI: 10.1038/35104644

Google Scholar

[3] J. Gaubicher, T. L. Mercier, Y. Chabre, J. Angenault and M. Quarton, Li/β-VOPO4: a new 4 V system for lithium batteries, J. Electrochem. Soc. 146 (1999) 4375–4379.

DOI: 10.1149/1.1392646

Google Scholar

[4] S. Y. Chung, J. T. Bloking, Y. M. Chiang, On the electronic conductivity of phospho-olivines as lithium storage electrodes, Nat. Mater. 2 (2003) 702-703.

DOI: 10.1038/nmat1009b

Google Scholar

[5] H. Huang, S. C. Yin, L. F. Nazar, Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochem. Solid-State. Lett. 4 (2001) A170-A172.

DOI: 10.1149/1.1396695

Google Scholar

[6] Z. Xin-wen, Z. Dan, W. Li-na, L. Qiao-yun, Z. Hong-xing and Z. Ke-li, Synthesis, characterization and properties of LiFePO4/C cathode material, Wuhan Univ. J. Nat. Sci. 10 (2005) 909-912.

DOI: 10.1007/bf02832437

Google Scholar

[7] T. Maxisch, F. Zhou, G. Ceder, Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies, Phys. Rev. B. 73 (2006) 1–6.

DOI: 10.1103/physrevb.73.104301

Google Scholar

[8] Y. Gu, M. Weng, G. Teng, H. Zeng, J. Jie, W. Xiao, J. Zheng and F. Pan, Tuning polaronic redox behavior in olivine phosphate, Phys. Chem. Chem. Phys. 21 (2019) 4578–4583.

DOI: 10.1039/c8cp06083e

Google Scholar

[9] K. Hoang, M. D. Johannes, First-principles studies of the effects of impurities on the ionic and electronic conduction in LiFePO4, J. Power. Sources. 206 (2012) 274–281.

DOI: 10.1016/j.jpowsour.2012.01.126

Google Scholar

[10] C. L. Fan, C. R. Lin, S. C. Han, J. Chen, L. F. Li, Y. M. Bai, K. H. Zhang and X. Zhang, Structure, conductive mechanism and electrochemical performances of LiFePO4/C doped with Mg2+, Cr3+ and Ti4+ by a carbothermal reduction method, New J. Chem. 38 (2014) 795–801.

DOI: 10.1039/c3nj01285a

Google Scholar

[11] M. Wagemaker, B. L. Ellis, D. L. Hecht, F. M. Mulder and L. F. Nazar, Proof of supervalent doping in olivine LiFePO4, Chem. Mater. 20 (2008) 6313-6315.

DOI: 10.1021/cm801781k

Google Scholar

[12] G. X. Wang, S. Bewlay, S. A. Needham, H. K. Liu, R. S. Liu, V. A. Drozd, J. F. Lee and J. M. Chen, Synthesis and characterization of LiFePO4 and LiuTi0.01Fe0.99PO4 cathode materials, J. Electrochem. Soc. 153 (2006) A25-A31.

DOI: 10.1149/1.2128766

Google Scholar

[13] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mat. Sci. 6 (1996) 15-50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[14] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[15] P. E. Blochl, Projector augmented-wave method, Phys. Rev. B. 50 (1994) 17953–17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[16] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999) 1758–1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[17] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[18] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study, Phys. Rev. B. 57 (1998) 1505–1509.

DOI: 10.1103/physrevb.57.1505

Google Scholar

[19] G. K. P. Dathar, D. Sheppard, K. J. Stevenson and G. Henkelman, Calculations of Li-ion diffusion in olivine phosphates, Chem. Mater. 23 (2017) 4032–4037.

DOI: 10.1021/cm201604g

Google Scholar

[20] M. Nishijima, T. Ootani, T. Kamimura, T. Sueki, S. Esaki, S. Murai, K. Fujita, K. Tanaka, K. Ohira, Y. Koyama and I. Tanaka, Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery, Nat. Commun. 5 (2014) 1-7.

DOI: 10.1038/ncomms5553

Google Scholar

[21] H. J. Monkhorst, J. D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188–5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[22] G. Rousse, L. R. Carvajal, S. Patoux and C. Masquelier, Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4, Chem. Mater. 15 (2003) 4082–4090.

DOI: 10.1021/cm0300462

Google Scholar

[23] G. Henkelman, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904.

DOI: 10.1063/1.1329672

Google Scholar

[24] S. Li, M. S. Sellers, C. Basaran, A. J. Schultz and D. A. Kofke, Lattice strain due to an atomic vacancy, Int. J. Mol. Sci. 10 (2009) 2798–2808.

DOI: 10.3390/ijms10062798

Google Scholar

[25] M. E. A. Dompablo, A. M. García, M. Taravillo, DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs, J. Chem. Phys. 135 (2011) 1-9.

DOI: 10.1063/1.3617244

Google Scholar

[26] H. Jin, E. Debroye, M. Keshavarz, I. G. Scheblykin, M. B. J. Roeffaers, J. Hofkens and J. A. Steele, It's a trap! on the nature of localised states and charge trapping in lead halide perovskites, Mater. Horiz. 7 (2020) 397–410.

DOI: 10.1039/c9mh00500e

Google Scholar