Optimization of Protoplast Formation, Regeneration, and Viability in Sorangium cellulosum

Article Preview

Abstract:

Sorangium cellulosum can product many secondary metabolites that is unique structural and makes these microorganisms highly attractive for drug development, especially epothilone, on cancer cells a cytotoxic macrolide which is naturally produced by Soxhlet cellulose that have the action of microtubule stabilization, is a promising anticancer drug. In this research, the factors affecting the regeneration and preparation of the protoplast of Sorangium cellulosum were discussed, those were regeneration media, enzymes and osmotic stabilizers. This study provide the distruction for improving the production of epothilone through genome shuffling, mutation, fusion and transformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

303-308

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shui, Z. X., Qin, H., Wu, B., Ruan, Z. Y., Wang, L. S., & Tan, F. R., et al. (2015). Adaptive laboratory evolution of ethanologenic zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl Microbiol Biotechnol 99: 5739-5748.

DOI: 10.1007/s00253-015-6616-z

Google Scholar

[2] Kundu, C., & Lee, J. W. (2015). Optimization conditions for oxalic acid pretreatment of deacetylated yellow poplar for ethanol production. J Ind Eng Chem32: 298-304.

DOI: 10.1016/j.jiec.2015.09.001

Google Scholar

[3] Ma, K. D., Zhiyong, R., Shui, Z. X., Wang, Y. W., Hu, G. Q., & He, M. X. (2016). Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of zymomonas mobilis. Bioresource Technol.203: 295-302.

DOI: 10.1016/j.biortech.2015.12.054

Google Scholar

[4] Chen, H., Chen, S., Li, C., & Shu, G.( 2015). Response surface optimization of lyoprotectant for lactobacillus bulgaricus during vacuum freeze-drying. Prep Biochem Biotech 45: 463.

DOI: 10.1080/10826068.2014.923451

Google Scholar

[5] Nurhayati, Cheng, C. L., Nagarajan, D., & Chang, J. S. (2016). Immobilization of zymomonas mobilis, with Fe2O3-modified polyvinyl alcohol for continuous ethanol fermentation. Biochem Eng J 114: 298-306.

DOI: 10.1016/j.bej.2016.07.021

Google Scholar

[6] Patil, S. S., & Jena, H. M.( 2015). Statistical optimization of phenol degradation by bacillus pumilus os1 using plackett–burman design and response surface methodology. Arab J Sci Eng 40: 2141-2151.

DOI: 10.1007/s13369-015-1765-z

Google Scholar

[7] Shui, Z. X., Qin, H., Wu, B., Ruan, Z. Y., Wang, L. S., & Tan, F. R., et al. (2015). Adaptive laboratory evolution of ethanologenic zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl Microbiol Biotechnol 99: 5739-5748.

DOI: 10.1007/s00253-015-6616-z

Google Scholar

[8] Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., & Picataggio, S. (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenic zymomonas mobilis. Science 267: 240-243.

DOI: 10.1126/science.267.5195.240

Google Scholar

[9] Chandel, A. K., Chan, E. S., Rudravaram, R., Narasu, M. L., Rao, L. V., & Ravindra, P. (2007). Economics and environmental impact of bioethanol production technologies: an appraisa l. Biotechnolo Mol Biol Rev2: 14-32.

Google Scholar

[10] Cazetta, M. L., Celligoi, M. A. P. C., Buzato, J. B., & Scarmino, I. S.( 2007). Fermentation of molasses by zymomonas mobilis: effects of temperature and sugar concentration on ethanol productio -n. Bioresource Technol 98: 2824-2828.

DOI: 10.1016/j.biortech.2006.08.026

Google Scholar