Two-Stage Sintering of Nb2O5 Doped Zirconia Toughened Alumina (ZTA) Composites

Article Preview

Abstract:

It is estimated that 130 million people will suffer from osteoarthritis by 2050 which require patient to undergo a surgical procedure known as total hip replacement which has lifespan of 20 years and failure rates of ~1%. This research would highlight the effects of doping Niobium Oxide (Nb2O5) between 0 vol % to 0.8 vol % into Zirconia-Toughened Alumina (ZTA) composites which is the main biomaterials used to manufacture total hip arthroplasty. The samples were sintered using two-stage sintering (TSS) between 1400°C and 1550°C for first-stage sintering temperature at heating rate of 20°C/min. At second stage, the samples were sintered at 1350°C and hold for 12 hours. It was found that TSS combined with addition of Nb2O5 as dopants were beneficial in producing fine-grained ZTA composites with improved mechanical properties compared to undoped ZTA composites produced via TSS. Compared to undoped ZTA composites, samples doped with Nb2O5 and sintered at T1 ≥1400°C were fully densed (>98%), achieved Vickers hardness more than 20 GPa and Young’s modulus higher than 410 GPa and at the same time fracture toughness of more than 8 MPam1/2. Based on the findings, production of ZTA composites with enhanced mechanical properties with longer lifespan is possible which is beneficial in ensuring the well-being of osteoarthritis patients.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-333

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Malchau, P. Herberts, L. Ahnfelt, Prognosis of total hip replacement in Sweden: follow-up of 92,675 operations performed 1978–1990, Acta Orthopaedica Scandinavica, 64 no. 5 (1993) 497-506.

DOI: 10.3109/17453679308993679

Google Scholar

[2] K. R. Schulte, J. J. Callaghan, S. S. Kelley, R. C. Johnston, The outcome of Charnley total hip arthroplasty with cement after a minimum twenty-year follow-up. The results of one surgeon. JBJS, 75 no. 7 (1993) 961-975.

DOI: 10.2106/00004623-199307000-00002

Google Scholar

[3] I. Wiklund, B. Romanus, (1991) A comparison of quality of life before and after arthroplasty in patients who had arthrosis of the hip joint, The Journal of bone and joint surgery, 73 no. 5 (1991) 765-769.

DOI: 10.2106/00004623-199173050-00016

Google Scholar

[4] M. H. Liang, K. E. Cullen, M. G. Larson, M. S. Thompson, J. A. Schwartz, A. H. Fossel, W. N. Roberts, C. B. Sledge, Cost‐effectiveness of total joint arthroplasty in osteoarthritis. Arthritis & Rheumatism, Official Journal of the American College of Rheumatology, 29 no. 8 (1986) 937-943.

DOI: 10.1002/art.1780290801

Google Scholar

[5] B. Jonsson, S. E. Larsson, Functional improvement and costs of hip and knee arthroplasty in destructive rheumatoid arthritis, Scandinavian journal of rheumatology, 20 no. 5 (1991) 351-357.

DOI: 10.3109/03009749109096811

Google Scholar

[6] A. Laupacis, R. Bourne, C. Rorabeck, D. Feeny, C. Wong, P. Tugwell, K. Leslie, R. Bullas, The effect of elective total hip replacement on health-related quality of life, The Journal of bone and joint surgery, 75 no. 11 (1993) 1619-1626.

DOI: 10.2106/00004623-199311000-00006

Google Scholar

[7] T. Zhu, Z. Xie, Y. Han, S. Li, (2018) Microstructure and mechanical properties of ZTA composites fabricated by oscillatory pressure sintering, Ceram. Int., 44 no. 1 (2018) 505-510.

DOI: 10.1016/j.ceramint.2017.09.204

Google Scholar

[8] Y. W. Chen, J. Moussi, J. L. Drury, J. C. Wataha, (2016) Zirconia in biomedical applications, Expert review of medical devices, 13 no. 10 (2016) 945-963.

DOI: 10.1080/17434440.2016.1230017

Google Scholar

[9] D. J. Green, Transformation Toughening Of Ceramics, CRC press, United States, (2018).

Google Scholar

[10] K. Fan, J. Y. Pastor, J. Ruiz-Hervias, J. Gurauskis, C. Baudin, (2016) Determination of mechanical properties of Al2O3/Y-TZP ceramic composites: Influence of testing method and residual stresses, Ceram. Int., 42 no. 16 (2016) 18700-18710.

DOI: 10.1016/j.ceramint.2016.09.008

Google Scholar

[11] I. W. Chen, and X. H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, 404 no. 6774 (2000) 168-171.

DOI: 10.1038/35004548

Google Scholar

[12] K. Bodišová, P. Šajgalík, D. Galusek, P. Švančárek, Two‐stage sintering of alumina with submicrometer grain size. J. of the Am. Ceram. Soc., 90 no. 1 (2007) 330-332.

DOI: 10.1111/j.1551-2916.2006.01408.x

Google Scholar

[13] M. Mazaheri, A. Simchi, F. Golestani-Fard, Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering, J. of the Eur. Ceram. Soc., 28 no. 15 (2008) 2933-2939.

DOI: 10.1016/j.jeurceramsoc.2008.04.030

Google Scholar

[14] X. H. Wang, X. Y. Deng, H. L. Bai, Z. Zhou, W. G. Qu, L. T. Li, I. W. Chen, Two-Step Sintering of Ceramics with Constant Grain-Size, II: BaTiO3 and Ni–Cu–Zn Ferrite, J. of the Am. Ceram. Soc., 89 (2006) 438-443.

DOI: 10.1111/j.1551-2916.2005.00728.x

Google Scholar

[15] A. Polotai, K. Breece, E. Dickey, C. Randall, A. Ragulya, A Novel Approach to Sintering Nanocrystalline Barium Titanate Ceramics, J. of the Am. Ceram. Soc., 88 no. 11 (2005) 3008-3012.

DOI: 10.1111/j.1551-2916.2005.00552.x

Google Scholar

[16] Y. I. Lee, Y. W. Kim, M. Mitomo, D. Y. Kim, Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering, J. of the Am. Ceram. Soc., 86 no. 10 (2003) 1803-1805.

DOI: 10.1111/j.1151-2916.2003.tb03560.x

Google Scholar

[17] S. Sivanesan, T. H. Loong, S. Namasivayam, M. H. Fouladi, Two-Stage Sintering of Alumina-Y-TZP (Al2O3 /Y-TZP) Composites, K.E.M., 814 (2019) 12-18.

DOI: 10.4028/www.scientific.net/kem.814.12

Google Scholar

[18] A. M. Hassan, S. M. Naga, M. Awaad, Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites, Int. Jour. of Refrac. Met. and Hard Mater., 48 (2015) 338-345.

DOI: 10.1016/j.ijrmhm.2014.10.006

Google Scholar

[19] S. Sivanesan, T.H. Loong, S. Namasivayam, M. H. Fouladi, Effects of CeO2 Addition on Slip-Cast Yttria Tetragonal Zirconia Polycrystals Toughened Alumina (ZTA), K.E.M., 814 (2019) 340-346.

DOI: 10.4028/www.scientific.net/kem.814.340

Google Scholar

[20] K. Biotteau-Deheuvels, L. Zych, L. Gremillard, J. Chevalier, Effects of Ca-, Mg-and Si-doping on microstructures of alumina–zirconia composites, Jour. of the Euro. Ceram. Soc., 32 no. 11 (2012) 2711-2721.

DOI: 10.1016/j.jeurceramsoc.2011.11.011

Google Scholar

[21] A. Z. Azhar, H. Mohamad, M. M. Ratnam, Z. A. Ahmad, Effect of MgO particle size on the microstructure, mechanical properties and wear performance of ZTA–MgO ceramic cutting inserts, Int. Jour. of Refrac. Met. and Hard Mat., 29 no. 4 (2011) 456-461.

DOI: 10.1016/j.ijrmhm.2011.02.002

Google Scholar

[22] A. Z. Azhar, L. C. Choong, H. Mohamed, M. M. Ratnam, Z. A. Ahmad, Effects of Cr2O3 addition on the mechanical properties, microstructure and wear performance of zirconia-toughened-alumina (ZTA) cutting inserts, Jour. of Alloys and Compounds, 513 (2012) 91-96.

DOI: 10.1016/j.jallcom.2011.09.092

Google Scholar

[23] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. of. Mater. Sci. Letters, 2 no. 5 (1983) 221-223.

DOI: 10.1007/bf00725625

Google Scholar

[24] Z. D. Sktani, N. A. Rejab, M. M. Ratnam, Z.A. Ahmad, Fabrication of tougher ZTA ceramics with sustainable high hardness through (RSM) optimisation, Int. Jour. of Refrac. Met. and Hard Mat., 74 (2018) 78-86.

DOI: 10.1016/j.ijrmhm.2018.03.006

Google Scholar

[25] C. K. Jeffrey, A. Kumanan, M. M. Pang, L. C. Yong, S. Sivakumar, Sintering behavior of forsterite with manganese oxide as doping agent, J. Eng. Sci. Techno., 1 (2015) 1-7.

Google Scholar

[26] S. Siva Kumar, H. L. Teow, N. Ali, K. C. L. Jeffrey, Densification behavior and properties of iron oxide doped Y-TZP ceramics, J. of Eng. Sci. and Tech., (2016) 176-187.

Google Scholar

[27] N. Obradović, F. Kern, (2018) Properties of 3Y-TZP zirconia ceramics with graphene addition obtained by spark plasma sintering, Ceram. Int, 44 no. 14 (2018) 16931-16936.

DOI: 10.1016/j.ceramint.2018.06.133

Google Scholar

[28] N.A. Rejab, W. K. Lee, Z.D. Sktani, Z.A. Ahmad, Hardness and toughness enhancement of CeO2 addition to ZTA ceramics through HIPping technique, Int. Jour. of Refrac. Met. and Hard Mat., 69 (2017) 60-65.

DOI: 10.1016/j.ijrmhm.2017.08.002

Google Scholar

[29] P. Tan, P. Wu, L. Gao, Y. Sui, Y. Jiang, Influence of Si3N4 content on the physical and mechanical properties of zirconia-toughened alumina (ZTA) ceramic composites, Mat. Res. Exp., 6 no. 6 (2019) 65205.

DOI: 10.1088/2053-1591/ab0e54

Google Scholar

[30] M. M. Boutz, A. J. Winnubst, F. Hartgers, A. J. Burggraaf, Effect of additives on densification and deformation of tetragonal zirconia, Jour. of Mat. Sci, 29 no. 20 (1994) 5374-5382.

DOI: 10.1007/bf01171550

Google Scholar

[31] Q. Dong, Z. H. Du, T. S. Zhang, J. Lu, X. C. Song, J. Ma, Sintering and ionic conductivity of 8YSZ and CGO10 electrolytes with small addition of Fe2O3: a comparative study, Int. Jour. of Hydro. Ener., 34 no. 19 (2009) 7903-7309.

DOI: 10.1016/j.ijhydene.2009.06.042

Google Scholar

[32] A.M. Hassan, M. Awaad, F. Bondioli, S. M. Naga, Densification behavior and mechanical properties of niobium-oxide-doped alumina ceramics. J. Ceram. Sci. Technol., 5 no. 1 (2014) 51-56.

Google Scholar

[33] J. D. Powers, A. M. Glaeser, Grain boundary migration in ceramics. Interface Science, 6 no. 1-2 (1998) 23-39.

Google Scholar

[34] K. Maiti, A. Sil, Microstructural relationship with fracture toughness of undoped and rare earths (Y, La) doped Al2O3–ZrO2 ceramic composites. Ceram. Int., 37 no. 7 (2011) 2411-2421.

DOI: 10.1016/j.ceramint.2011.05.089

Google Scholar

[35] Y. Yang, Y. Wang, W. Tian, Z. Q. Wang, Y. Zhao, L. Wang, H. M. Bian, Reinforcing and toughening alumina/titania ceramic composites with nano-dopants from nanostructured composite powders, Mat. Sci. and Eng., A 508 no. 1-2 (2009) 161-166.

DOI: 10.1016/j.msea.2008.12.040

Google Scholar

[36] M. Asmani, C. Kermel, A. Leriche, M. Ourak,(2001) Influence of porosity on Young's modulus and Poisson's ratio in alumina ceramics, Jour. of the Euro. Ceram. Soc., 21 no. 8 (2001) 1081-1086.

DOI: 10.1016/s0955-2219(00)00314-9

Google Scholar

[37] D. J. Kim, H. J. Jung, J. W. Jang, H. L. Lee, (1998) Fracture Toughness, Ionic Conductivity, and Low‐Temperature Phase Stability of Tetragonal Zirconia Codoped with Yttria and Niobium Oxide, Jour. of the Am. Ceram. Soc., 81 no. 9 (1998) 2309-2314.

DOI: 10.1111/j.1151-2916.1998.tb02626.x

Google Scholar