The Effect of Ta2O5 on the Densification Behaviour and Mechanical Properties of Zirconia-Toughened Alumina (ZTA) Composites Prepared by Two-Stage Sintering

Article Preview

Abstract:

By 2050, 130 million people are estimated to suffer from osteoarthritis worldwide which would require patients to undergo total hip replacement procedure which have a lifespan of 20 years and failure rates of ~1%. In this research, Zirconia Toughened Alumina (ZTA) which is the main biomaterial used for total hip arthroplasty were doped with varying vol % of Tantalum Oxide (Ta2O5) from 0 to 0.4 vol % were produced through conventional two-stage sintering with first stage sintering temperature, ranging between 1400°C and 1550°C, heated at 20°C/min, followed by second stage sintering temperature of 1350°C and hold for 12 hours. The efficacy of two-stage sintering on the microstructure and mechanical properties of the sintered samples were then evaluated. Addition of Ta2O5 combined with two-stage sintering were able to produce ZTA composites with enhanced grain size and mechanical properties compared to undoped ZTA composites. The samples with 0.3 vol% Ta2O5 content and above sintered at T1 ≥1450°C achieved density > 99% T.D., Vickers hardness > 19 GPa, Young’s modulus > 400 GPa and fracture toughness > 6 MPam1/2 when compared to undoped ZTA composites. This would enable production of ZTA with improved mechanical properties and lifespan ensuring the well-being of people suffering from osteoarthritis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

320-326

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Neumann, K. G. Freund, K.H. Sorenson, Long-term results of Charnley total hip replacement. Review of 92 patients at 15 to 20 years. The Journal of bone and joint surgery, 76 no. 2 (1994) 245-251.

DOI: 10.1302/0301-620x.76b2.8113285

Google Scholar

[2] K. Lampropoulou-Adamidou, & G. Hartofilakidis (2017). Total Hip Replacement: Case Series from a Leading Registry. Springer, Switzerland, (2017).

DOI: 10.1007/978-3-319-53360-5

Google Scholar

[3] D. J. Green, Transformation Toughening Of Ceramics, CRC press, United States, (2018).

Google Scholar

[4] I. W. Chen, and X. H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, 404 no. 6774 (2000) 168-171.

DOI: 10.1038/35004548

Google Scholar

[5] K. Bodišová, P. Šajgalík, D. Galusek, P. Švančárek, Two‐stage sintering of alumina with submicrometer grain size. J. of the Am. Ceram. Soc., 90 no. 1 (2007) 330-332.

DOI: 10.1111/j.1551-2916.2006.01408.x

Google Scholar

[6] M. Mazaheri, A. Simchi, F. Golestani-Fard, Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering, J. of the Eur. Ceram. Soc., 28 no. 15 (2008) 2933-2939.

DOI: 10.1016/j.jeurceramsoc.2008.04.030

Google Scholar

[7] X. H. Wang, X. Y. Deng, H. L. Bai, Z. Zhou, W. G. Qu, L. T. Li, I. W. Chen, Two-Step Sintering of Ceramics with Constant Grain-Size, II: BaTiO3 and Ni–Cu–Zn Ferrite, J. of the Am. Ceram. Soc., 89 (2006) 438-443.

DOI: 10.1111/j.1551-2916.2005.00728.x

Google Scholar

[8] A. Polotai, K. Breece, E. Dickey, C. Randall, A. Ragulya, A Novel Approach to Sintering Nanocrystalline Barium Titanate Ceramics, J. of the Am. Ceram. Soc., 88 no. 11 (2005) 3008-3012.

DOI: 10.1111/j.1551-2916.2005.00552.x

Google Scholar

[9] Y. I. Lee, Y. W. Kim, M. Mitomo, D. Y. Kim, Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering, J. of the Am. Ceram. Soc., 86 no. 10 (2003) 1803-1805.

DOI: 10.1111/j.1151-2916.2003.tb03560.x

Google Scholar

[10] S. Sivanesan, T. H. Loong, S. Namasivayam, M. H. Fouladi, Two-Stage Sintering of Alumina-Y-TZP (Al2O3 /Y-TZP) Composites, K.E.M., 814 (2019) 12-18.

DOI: 10.4028/www.scientific.net/kem.814.12

Google Scholar

[11] A. M. Hassan, S. M. Naga, M. Awaad, Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites, Int. Jour. of Refrac. Met. and Hard Mater., 48 (2015) 338-345.

DOI: 10.1016/j.ijrmhm.2014.10.006

Google Scholar

[12] S. Sivanesan, T.H. Loong, S. Namasivayam, M. H. Fouladi, Effects of CeO2 Addition on Slip-Cast Yttria Tetragonal Zirconia Polycrystals Toughened Alumina (ZTA), K.E.M., 814 (2019) 340-346.

DOI: 10.4028/www.scientific.net/kem.814.340

Google Scholar

[13] K. Biotteau-Deheuvels, L. Zych, L. Gremillard, J. Chevalier, Effects of Ca-, Mg-and Si-doping on microstructures of alumina–zirconia composites, Jour. of the Euro. Ceram. Soc., 32 no. 11 (2012) 2711-2721.

DOI: 10.1016/j.jeurceramsoc.2011.11.011

Google Scholar

[14] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. of. Mater. Sci. Letters, 2 no. 5 (1983) 221-223.

DOI: 10.1007/bf00725625

Google Scholar

[15] N.A. Rejab, W. K. Lee, Z.D. Sktani, Z.A. Ahmad, Hardness and toughness enhancement of CeO2 addition to ZTA ceramics through HIPping technique, Int. Jour. of Refrac. Met. and Hard Mat., 69 (2017) 60-65.

DOI: 10.1016/j.ijrmhm.2017.08.002

Google Scholar

[16] Z. D. Sktani, N. A. Rejab, M. M. Ratnam, Z.A. Ahmad, Fabrication of tougher ZTA ceramics with sustainable high hardness through (RSM) optimisation, Int. Jour. of Refrac. Met. and Hard Mat., 74 (2018) 78-86.

DOI: 10.1016/j.ijrmhm.2018.03.006

Google Scholar

[17] P. Tan, P. Wu, L. Gao, Y. Sui, Y. Jiang, Influence of Si3N4 content on the physical and mechanical properties of zirconia-toughened alumina (ZTA) ceramic composites, Mat. Res. Exp., 6 no. 6 (2019) 65205.

DOI: 10.1088/2053-1591/ab0e54

Google Scholar

[18] N. Obradović, F. Kern, (2018) Properties of 3Y-TZP zirconia ceramics with graphene addition obtained by spark plasma sintering, Ceram. Int, 44 no. 14 (2018) 16931-16936.

DOI: 10.1016/j.ceramint.2018.06.133

Google Scholar

[19] C. K. Jeffrey, A. Kumanan, M. M. Pang, L. C. Yong, S. Sivakumar, Sintering behavior of forsterite with manganese oxide as doping agent, J. Eng. Sci. Techno., 1 (2015) 1-7.

Google Scholar

[20] S. Siva Kumar, H. L. Teow, N. Ali, K. C. L. Jeffrey, Densification behavior and properties of iron oxide doped Y-TZP ceramics, J. of Eng. Sci. and Tech., (2016) 176-187.

Google Scholar

[21] F. Guo, P. Xiao, Effect of Fe2O3 doping on sintering of yttria-stabilized zirconia. Jour. of the Eur. Ceram. Soc., 32 no. 16 (2012) 4157-4164.

DOI: 10.1016/j.jeurceramsoc.2012.07.035

Google Scholar

[22] K. Matsui, N. Ohmichi, M. Ohgai, H. Yoshida, Y. Ikuhara, (2006) Effect of alumina-doping on grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal, J. of Mat. Res., 21 no.9 (2006) 2278-89.

DOI: 10.1557/jmr.2006.0274

Google Scholar

[23] M. Asmani, C. Kermel, A. Leriche, M. Ourak M (2001) Influence of porosity on Young's modulus and Poisson's ratio in alumina ceramics, J. Of The Eur. Ceram. Soc. 21 no. 8 (2001) 1081-1086.

DOI: 10.1016/s0955-2219(00)00314-9

Google Scholar

[24] C. Xu, C. Huang, X. Ai, Toughening and strengthening of advanced ceramics with rare earth additives, Ceram. Int., 32 no.4 (2006) 423-429.

DOI: 10.1016/j.ceramint.2005.03.021

Google Scholar