Research Progress of Rare Earth-Based Hydrogen Storage Alloys

Article Preview

Abstract:

As a clean and efficient renewable energy, hydrogen energy will play an important role in the future energy system. The utilization of hydrogen energy involves various fields including production, application, storage and transportation, and the storage of hydrogen has become the main technical bottleneck restricting the wide application of hydrogen energy. Rare earth-based hydrogen storage alloys are promising hydrogen storage medium and have been widely used as anode materials for commercial Ni/MH batteries because of the excellent hydrogen storage and electrochemical properties. In this paper, the research progress of AB5 and R-Mg-Ni-based rare earth-based hydrogen storage alloys is described in detail. The alloy composition, preparation process, heat treatment and surface treatment process have significant influence on the comprehensive properties of rare earth-based hydrogen storage alloys. The effects of element substitution on the hydrogen storage capacity, corrosion resistance, oxidation resistance and electrochemical properties of the alloys are emphasized. This paper provides a guidance and a theoretical basis for the development and application of rare earth-based hydrogen storage materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

354-362

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Dunn, Hydrogen futures: toward a sustainable energy system, Int. J. Hydrogen Energy 27 (2002) 235-264.

DOI: 10.1016/s0360-3199(01)00131-8

Google Scholar

[2] V.J. Van, F. Kuijpers, H. Bruning, Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds, Philips. Res. Rep. 25 (1970) 133-40.

Google Scholar

[3] J. Xu, Q Li, Y. Jing, Effect of Ce Instead of La on Structure and properties of hydrogen storage alloy, Sci. Technol. Baotou Steel 43 (2017) 62-65.

Google Scholar

[4] J. Willems, Metal hydride electrodes: stability of LaNi5-related compounds, Zeitschrift für Physikalische Chemie. 147 (1986) 231-231.

DOI: 10.1524/zpch.1986.147.1_2.231

Google Scholar

[5] Z. Qiao. Study on Co free and over stoichiometric AB5 type hydrogen storage's high rate discharge performance, Lanzhou: Lanzhou University of Technology, (2007).

Google Scholar

[6] S. Zhou, T. Sun, R. Tang, F, Xiao, Properties and electrochemical performance of Pr/Nd-free Mn(Ni, Co, Mn, Al)5 hydrogen storage alloy, J. Rare Earths 31 (2013) 60-70.

Google Scholar

[7] L. Huang, Y. Wang, R. Tang, Q. Lu, N. Peng F, Xiao, Study on high rate discharge properties of nanocrystalline rare earth hydrogen storage alloys, J. Guangdong Non-Ferrous Met. (2) (2007) 132-135.

Google Scholar

[8] Y. Zhang, X. Dong, S. Guo, G. Wang, J. Ren, X. Wang, Effects of rapid quenching on microstructure and electrochemical performances of La-Mg-Ni system, Hydrogen Storage Alloys, Rare Met. Mater. Eng. 35 (2006) 467-471.

Google Scholar

[9] C. Deng, P. Shi, S .Zhang, J. Zeng, Surface Modification and property study of LaNi5 hydrogen storage alloy, Chin. J. Inorg. Chem. 21 (2015) 446-450.

Google Scholar

[10] G. Sang, C.Shen, Y. Zhang, W. Cao, M. Tu, Y. Sun, Z. Zheng, X. Ye, Research of properties for hydrogen storage alloy improved by surface treatment, Chin. J. Rare Met. 30 (2006) 31-34.

Google Scholar

[11] C.-Y. Seo, S.-J. Choi, J. Choic, C.-N. Park, P.S. Lee, J.-Y. Lee, Effect of Ti and Zr additions on the characteristics of AB5-type hydride electrode for Ni-MH secondary battery, Int. J. Hydrogen Energy 28 (2003) 317-327.

DOI: 10.1016/s0360-3199(02)00079-4

Google Scholar

[12] C.-Y. Seo, S.-J. Choi, J. Choic, C.-N. Park, J.-Y. Lee, Effect of V and Zr on the electrochemical properties of La-based AB5-type metal hydride electrodes, J. Alloys Compd. 351 (2003) 255-263.

DOI: 10.1016/s0925-8388(02)01042-3

Google Scholar

[13] H. Yuan, Y. Wang, C. Yan, D. Song, Progress in rare earth-based high performance hydrogen storage alloys, Chem. Ind. Eng. Prog. 31 (2012) 253-258.

Google Scholar

[14] Y. Zhang, B. Li, H. Ren, Z. Wu, X. Dong, X. Wang, Effects of rapid quenching on the microstructure and electrochemical characteristics of La0.7Mg0.3Co0.45Ni2.55-xCux(x=0~0.4)electrode alloys, Rare Met. Mater. Eng. 37 (2008) 941-946.

DOI: 10.1016/s1875-5372(09)60025-4

Google Scholar

[15] D. Zhao, Y. Zhang, X. Dong, Y. QI, S. GUO, X. WANG, Influence of rapid quenching on cyclic stability of La-Mg-Ni system (AB3-type) electrode alloys, Journal of Rare Earths, 26 (2008) 291-297.

DOI: 10.1016/s1002-0721(08)60083-6

Google Scholar

[16] M. Williams, M.V. Lototsky, V.M. Linkov, A.N. Nechaev, J.K. Solberg, V.A. Yartys, Nanostructured surface coatings for the improvement of AB5-type hydrogen storage intermetallics, Int. J. Energy Res. 2009, 33(13): 1171-1179.

DOI: 10.1002/er.1609

Google Scholar

[17] T. Imoto, K. Kato, N. Higashiyama, M. Kimoto, Y. Itoh, K. Nishio, Microstructure and electrochemical characteristics of surface-treated Mm (Ni-Co-Al-Mn)4.76 alloys for nickel-metal hydride batteries, J. Alloys Compd. 285 (1999) 272-278.

DOI: 10.1016/s0925-8388(98)01049-4

Google Scholar

[18] K. Kadir, T. Sakai, I. Uehara, Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers, J. Alloys Compd. 257 (1997) 115-121.

DOI: 10.1016/s0925-8388(96)03132-5

Google Scholar

[19] T. Yamamoto, H. Inui, M. Yamaguchi, K. Sato, S. Fujitani, I. Yonezu, K. Nishio, Microstructures and hydrogen absorption/desorption properties of LaNi alloys in the composition range of La77.8~83.2 at.% Ni, Acta Mater. 45 (1997) 5213-5221.

DOI: 10.1016/s1359-6454(97)00206-1

Google Scholar

[20] H. Oesterreicher, J. Clinton, H. Bittner, Hydrides of La-Ni compounds, Mater. Res. Bull. 11 (1976) 1241-1247.

DOI: 10.1016/0025-5408(76)90028-3

Google Scholar

[21] Y. Zhang, G. Wang, X. Dong, S. Guo, J. Wu, X. Wang, Investigation on the microstructure and electrochemical performances of La2Mg (Ni0.85Co0.15)9Bx(x=0-0.2) hydrogen storage electrode alloys prepared by casting and rapid quenching, J. Alloys Compd. 379(2004), 298-304.

DOI: 10.1016/j.jallcom.2004.02.034

Google Scholar

[22] B. Liao, Y. Lei, L. Chen, G. Lu, H. Pan, Q. Wang, A study on the structure and electrochemical properties of La2Mg (Ni0.95M0.05)9 (M=Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys, J. Alloys Compd. 376 (2004) 186-195.

DOI: 10.1016/j.jallcom.2003.12.011

Google Scholar

[23] J. Guo, D. Huang, G. Li, S. Ma, W. Wei, Effect of La/Mg on the hydrogen storage capacities and electrochemical performances of La-Mg-Ni alloys, Mater. Sci. Eng. B 131 (2006) 169-172.

DOI: 10.1016/j.mseb.2006.04.020

Google Scholar

[24] B. Liao, Y. Lei, G. Lu, L. Chen, H..Pan, Q.D. Wang, The electrochemical properties of LaxMg3-xNi9(x=1.0-2.0) hydrogen storage alloys, J. Alloys Compd. 356 (2003) 746-749.

DOI: 10.1016/s0925-8388(03)00083-5

Google Scholar

[25] L. Liu, R. Tang, Y. Liu, Effects of rare earth elements on properties of La0.8Mg0.2Ni2.8Co0.6 hydrogen storage alloy, Chin. J. of Nonferrous Met. 13(2003) 871-875.

Google Scholar

[26] H. Pan, Q. Jin, M. Gao, Y. Liu, R. Li, Y. Lei, Effect of the cerium content on the structural and electrochemical properties of the La0.7-xCexMg0.3Ni2.875Mn0.1Co0.525 (x=0-0.5) hydrogen storage alloys, J. Alloys Compd. 373 (2004) 237-245.

DOI: 10.1016/j.jallcom.2003.10.041

Google Scholar

[27] D. Wang, Y. Luo, R. Yan, F. Zhang, L. Kang, Phase structure and electrochemical properties of La0.67Mg0.33Ni3.0-xCox (x=0.0, 0.25, 0.5, 0.75) hydrogen storage alloys, J. Alloys Compd. 413 (2006) 193-197.

DOI: 10.1016/j.jallcom.2005.03.111

Google Scholar

[28] M. Kanda, M. Yamamoto, K. Kanno, Y. Satoh, H. Hayashida, M. Suzuki, Cyclic behaviour of metal hydride electrodes and the cell characteristics of nickel-metal hydride batteries, J. Less-Common Met. 172 (1991) 1227-1235.

DOI: 10.1016/s0022-5088(06)80031-7

Google Scholar

[29] X. Zhang, Y. Luo, D. Wang, R. Yan, Y. Zhang, L. Kang, A study on the structure and electrochemical properties of La0.67Mg0.33Ni3.0-xAlx(x=0,0.1,0.2,0.3) hydrogen storage alloys, J. Funct. Mater. 36 (2005) 1034-1037.

Google Scholar

[30] B. Liao, Y. Lei, L. Chen, G. Lu, H. Pan, Q. Wang, The effect of Al substitution for Ni on the structure and electrochemical properties of AB3-type La2Mg (Ni1-xAlx)9 (x=0-0.05) alloys, J. Alloys Compd. 404 (2005) 665-668.

DOI: 10.1016/j.jallcom.2004.10.088

Google Scholar

[31] T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, M. Kanda, Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14, J. Alloys Compd. 311 (2000) L5-L7.

DOI: 10.1016/s0925-8388(00)01119-1

Google Scholar

[32] Y. Liu, H. Pan, M. Gao, Y. Zhu, Y. Lei, Q. Wang, The electrochemical performance of a La-Mg-Ni-Co-Mn metal hydride electrode alloy in the temperature range of -20 to 30°C, Electrochim. Acta 49 (2004) 545-555.

DOI: 10.1016/j.electacta.2003.09.008

Google Scholar

[33] Y. Liu, H. Pan, M. Gao, Y. Zhu, Y. Lei, Q. Wang, Annealing effects on structural and electrochemical properties of (LaPrNdZr)0.83Mg0.17(NiCoAlMn)3.3 alloy, J. Alloys Compd. 471 (2009) 371-377.

DOI: 10.1016/j.jallcom.2008.03.084

Google Scholar

[34] H. Pan, Y. Liu, M. Gao, Y. Zhu, Y. Lei, Q. Wang, A study on the effect of annealing treatment on the electrochemical properties of La0.67Mg0.33Ni2.5Co0.5 alloy electrodes, Int. J. Hydrogen Energy 28 (2003) 113-117.

DOI: 10.1016/s0360-3199(02)00035-6

Google Scholar

[35] F. Xiao. The Preparation, Structure and hydrogen storage properties of RE-Mg-Ni alloys, Guangzhou: South China University of Technology, (2012).

Google Scholar