[1]
J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59.
Google Scholar
[2]
D.Y. Leung, X. Wu, M.K.H. Leung, A review on biodiesel production using catalyzed transesterification, Appl. Energy. 87 (2010) 1083-1095.
DOI: 10.1016/j.apenergy.2009.10.006
Google Scholar
[3]
A.M. Rabie, M.A. Betiha, S.E. Park, Direct synthesis of acetic acid by simultaneous co-activation of methane and CO2 over Cu-exchanged ZSM-5 catalysts, Appl. Catal. B Environ. 215 (2017) 50-59.
DOI: 10.1016/j.apcatb.2017.05.053
Google Scholar
[4]
M.H. Hassan, M.A. Kalam, An overview of biofuel as a renewable energy source: development and challenges, Procedia Engineering. 56 (2013) 53.
DOI: 10.1016/j.proeng.2013.03.087
Google Scholar
[5]
N. Ediz, İ. Bentli, İ. Tatar, Improvement in filtration characteristics of diatomite by calcination, Int. J. Miner. Process. 94 (2010) 129-134.
DOI: 10.1016/j.minpro.2010.02.004
Google Scholar
[6]
S. É. Ivanov, A. V. Belyakov, Diatomite and its applications, Glass & Ceramics. 65 (2008) 18 – 21.
Google Scholar
[7]
E. Modiba, C. Enweremadu, H. Rutto, Production of biodiesel from waste vegetable oil using impregnated diatomite as heterogeneous catalyst, Chin. J. Chem. Eng., 23 (2015) 281-289.
DOI: 10.1016/j.cjche.2014.10.017
Google Scholar
[8]
R. Shan, C. Zhao, H. Yuan, S. Wang, Y. Wang, Transesterification of vegetable oil using stable natural diatomite-supported catalyst, Energy Convers. Manag. 138 (2017) 547-555.
DOI: 10.1016/j.enconman.2017.02.028
Google Scholar
[9]
A.M. Rabie, M. Shaban, M.R. Abukhadra, R. Hosny, S.A. Ahmed, N.A. Negm, Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil, J. Mol. Liq. 279 (2019) 224-231. 10] F. Sadik, J.H. Fincher, C.W. Hartman, X-ray diffraction analysis for identification of kaolin nf and bentonite usp, J. Pharmacol. Sci. 60 (1971) 916-918.
DOI: 10.1016/j.molliq.2019.01.096
Google Scholar
[11]
Z. Sun, C. Li, G. Yao, S. Zheng, In situ generated g-C3N4/TiO2 hybrid over diatomite supports for enhanced photodegradation of dye pollutants, Mater. Des. 94 (2016) 403-409.
DOI: 10.1016/j.matdes.2016.01.056
Google Scholar
[12]
B. Wang, G. Zhang, X. Leng, Z. Sun, S. Zheng, Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts, J. Hazard. Mater., 285 (2015) 212-220.
DOI: 10.1016/j.jhazmat.2014.11.031
Google Scholar
[13]
S.S. Ibrahim, A.Q. Selim, Heat treatment of natural diatomite, Physicochem. Probl. Miner. Process. 48 (2012) 413-424.
Google Scholar
[14]
L. Pagliari, M. Dapiaggi, A. Pavese, F. Francescon, A kinetic study of the quartz-cristobalite phase transition, J. Eur. Ceram. Soc. 33 (2013) 3403-3410.
DOI: 10.1016/j.jeurceramsoc.2013.06.014
Google Scholar
[15]
E. Modiba, C. Enweremadu, H. Rutto, Production of biodiesel from waste vegetable oil using impregnated diatomite as heterogeneous catalyst, Chinese. J. Chem. Eng. 23 (2015) 281-289.
DOI: 10.1016/j.cjche.2014.10.017
Google Scholar
[16]
Z. Liu, T. Fan, H. Zhou, D. Zhang, X. Gong, Q. Guo, H. Ogawa, Synthesis of ZnFe2O4/SiO2 composites derived from a diatomite template, Bioinspir Biomim. 2 (2007.) 30-35.
DOI: 10.1088/1748-3182/2/1/004
Google Scholar