Enhancement of Thermal and Sound Insulation Properties of Cement Composite Roofing Tile by Addition of Nanocellulose Coated Pineapple Fiber and Modified Rubber Tire Waste

Article Preview

Abstract:

In this work, the enhancement of thermal and sound insulation properties of cement composite roofing tile with nanocellulose coated pineapple fiber and modified waste tire rubber is studied. The composite was composed of bacterial nanocellose (BNC) coated pineapple fibers, modified rubber particles, platicizer and type I Portland cement in the weight ratio of 10:50:0.8:100 with the water to cement ratio (w/c) of 0.5. The thermal conducitity of the fiber rubber cement composite could be reduced to 0.1080 ± 0.0048 W/m.K as opposed to 0.3810 ± 0.0041 and 0.5860 ± 0.0050 W/m.K for the fiber cement and the rubber cement composites, respectively. Moreover, the noise reduction coefficient of the fiber rubber cement composite could be increased to 0.2832 as opposed to 0.2143 and 0.1899 for the fiber cement and the rubber cement composites, respectively. These results revealed that adding nanocellulose coated pineapple fiber and modified rubber particles together to the cement composite can enhance the thermal insulation and sound absorption abilities of the composite roof tile significantly better than adding each constituent separately.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

465-472

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Demin, P. Ana, S. Cuib, F. Xuc, T. Tuoa, J. Zhanga, H. Jianga, Effect of leaf fiber modification methods on mechanical and heat-insulating properties of leaf fiber cement-based composite, J. Build. Eng. 19 (2018) 573-583.

DOI: 10.1016/j.jobe.2018.05.028

Google Scholar

[2] M. Abdelmouleh, S. Boufi, M. Belgacem, A. Duarte, A. Salah, A. Gandini, Modification of cellulosic fibers with functionalized silanes: development of surface properties, Inter. J. Adh. Adhe. 24 (2004) 43-54.

DOI: 10.1016/s0143-7496(03)00099-x

Google Scholar

[3] J.L. Pehanich, P.R. Blankenhorn, M.R. Silsbee, Wood fiber surface treatment level effects on selected mechanical properties of wood fiber-cement composies, Cem. Con. Res. 34 (2004) 59-65.

DOI: 10.1016/s0008-8846(03)00193-5

Google Scholar

[4] L. Pimentel, A. Beraldo, H. Savastano, Durability of cellulose-cement composites modified by polymer, App. Eng. Agric. 26 (2006) 344-353.

Google Scholar

[5] K. Bilba, M.A. Arsenem, Silane treatment of bagasse fiber for reinforcement of cementitious composites, Composites; Part A. 39 (9) (2008) 1488-1495.

DOI: 10.1016/j.compositesa.2008.05.013

Google Scholar

[6] M. Ardanuy, J. Claramunt, R. Arevalo, F. Pares, E. Aeacri, T. Vidal, Nanofibrillated cellulose (NFC) as a potential reinforcement for high performance cement mortar composites, Bioresource. 7 (2012) 3883-3894.

Google Scholar

[7] M.T. Postek, R.J. Moon, A.W. Rudie, M.A. Bilodeau, Production and Applications of Cellulose Nanomaterials, TAPPI press, USA (2013).

Google Scholar

[8] S.J. Peters, T.S. Rushing, E.N. Landis, T.K. Cummins, Nanocellulose and microcellulose fibers for concrete, Trans. Res. Board of the National Academies, Washington DC, pp.25-28.

DOI: 10.3141/2142-04

Google Scholar

[9] S. Piti, Use of crumb rubber to improve thermal and sound properties of pre-cast concrete Panel, Con. Build. Mat. 23 (2009) 1084-1092.

DOI: 10.1016/j.conbuildmat.2008.05.021

Google Scholar

[10] K.A. Paine, R.K. Dhir, Research on new applications for granulated rubber in concrete, Const. Mater. 163 (CM1) (2010) 7-17.

Google Scholar

[11] K.A. Paine, R.K. Dhir, R. Moroney, K. Kopasakis, Use of crumb rubber to achieve freeze thaw resisting concrete, Con. Extreme Con. 6 (2015) 486-498.

DOI: 10.1680/cfec.31784.0047

Google Scholar

[12] M.S. Bashar, K.M. Anwar Hossain, J.T. EngSwee, G. Wong, M. Abdullahi, Properties of crumb rubber hollow concrete block, J. Clean. Pro. 23 (2012) 57-67.

DOI: 10.1016/j.jclepro.2011.10.035

Google Scholar

[13] H.R. Matthew, K.B. Najim, H.J. Christina, Transient thermal behavior of crumb rubber-modified concrete and implication for thermal response and energy efficiency in buildings, Appl. Therm. Eng. 33-34 (2012) 77-85.

DOI: 10.1016/j.applthermaleng.2011.09.015

Google Scholar

[14] K.R. Ali, M. Dehestani, P. Rahmatabadi, Mechanical properties of concrete containing a high volume of tire-rubber particles, Waste Manage. 28 (12) (2008) 2472-2482.

DOI: 10.1016/j.wasman.2008.01.015

Google Scholar

[15] J.N. Eiras, F. Segovia, M.V. Borrachero, M. Bonilla, J. Paya, Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires, Mater. & Design. 59 (2014) 550- 557.

DOI: 10.1016/j.matdes.2014.03.021

Google Scholar

[16] A. Nadal Gisbert, J.M. Gadea Borrell, F. Parres Garcia, E. Julia Sanchis, J.E. Crespo Amoros, J. Segura Alcaraz, F. Salas Vicente, Analysis behavior of static and dynamic properties of Ethylene-Propylene-Diene-Methylene crumb rubber mortar, Con. Build. Mat. 50 (2014) 671-682.

DOI: 10.1016/j.conbuildmat.2013.10.018

Google Scholar

[17] Y. Changhui, B. Liu, Y. Zheng, Effects of modification of recycled tire rubber particles on strength of crumb rubber concrete, Annu. Rev. Mater. Res. 27 (12) (2013) 113-116.

Google Scholar

[18] H. Zhang, G. Mifeng, L. Xiaoxing, G. Xuemao, Effect of Rubber Particle Modification on properties of Rubberized Concrete, J. Wuhan Univ.Technol.-Mat. Sci. Edit. 29 (4) (2014) 763-768.

DOI: 10.1007/s11595-014-0993-5

Google Scholar

[19] O. Obinna, Effects of surface-precoating and silica fume on crumb rubber-cement matrix interface and cement mortar properties, J. Clean. Prod. 104 (2015) 339-345.

DOI: 10.1016/j.jclepro.2015.04.116

Google Scholar

[20] D. Qiao, B. Huang, X.Shu, Rubber modified concrete improved by chemically active coatingand silane coupling agent, Constr. Build. Mater. 48 (2013) 116-123.

DOI: 10.1016/j.conbuildmat.2013.06.072

Google Scholar

[21] G. Trilok, S. Chaudhary, R.K. Shama, Mechanical and durability properties of waste rubber fiber concrete with and without silica fume, J. Clean. Prod. 112 (2016) 702-711.

DOI: 10.1016/j.jclepro.2015.07.081

Google Scholar

[22] L. P. Rivas-Vázquez, R. Suárez-Orduna, J. Hernández-Torres, E. Aquino-Bolanos, Effect of the surface treatment of recycled rubber on the mechanical strength of composite concrete/rubber, Mater. Struct. 48(9) (2015) 2809-2814.

DOI: 10.1617/s11527-014-0355-y

Google Scholar

[23] F. Mohammadkazemi, K. Doosthoseini, E. Ganjian, M. Azin, Manufacturing of bacterial nano-cellulose reinforced fiber cement composites, Constr. Build. Mater. 101(1) (2015) 958-964.

DOI: 10.1016/j.conbuildmat.2015.10.093

Google Scholar

[24] H. Liang, Y. Ma, Q. Liu, Y. Mu, Surface modification of crumb rubber and its influenceon the mechanical properties of rubber-cement concrete, Constr. Build. Mater. 120 (1) (2016) 403-407.

DOI: 10.1016/j.conbuildmat.2016.05.025

Google Scholar

[25] M. Ardanuy, J. Claramunt, J.A. Garcia-Hortal, M. Barra, Fiber-matrix interactions in cement mortar composites reinforced with cellulose fibers, Cellulose. 18 (2) (2011) 281-289.

DOI: 10.1007/s10570-011-9493-3

Google Scholar

[26] B.J. Mohr, J.J. Biernacki, K.E. Kurtis, Microstructural and chemical effects of wet/dry cycling on pulp fiber–cement composites, Cem. Concr. Res. 36 (7) (2006) 1240-1251.

DOI: 10.1016/j.cemconres.2006.03.020

Google Scholar

[27] M. Pommet, J. Juntaro, J.Y.Y. Heng, A. Mantalaris, A.F. Lee, K. Wilson, G. Kalinka, M.S.P. Shaffer, A. Bismarck, Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites, Biomacromolecules. 9 (6) (2018) 1643-1651.

DOI: 10.1021/bm800169g

Google Scholar

[28] J. Juntaro, M. Pommet, G. Kalinka, A. Mantalaris, M.S.P. Shaffer, A. Bismarck, Creatinghierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fiber, Adv. Mater. 20 (16) (2008) 3122-3126.

DOI: 10.1002/adma.200703176

Google Scholar