Finite Element Simulation of Micro-Thermoelectric Generators Based on Microporous Glass Template

Article Preview

Abstract:

COMSOL Multiphysics software-based three-dimensional finite element analysis is widely used in the performance simulation of thermoelectric devices. In this study, this software is used to simulate the heat transfer processes and power generation performance of micro-thermoelectric generators based on a microporous glass template. The temperature and electrical potential fields are coupled to each other through the thermoelectric effects during the calculations. The power generation performances of micro-thermoelectric generators with different template heights (d) for various temperature differences between their hot and cold ends (Th-c) are calculated. For the micro-thermoelectric generator that included four pairs of TE couples, the temperature difference between the two sides of the TE columns (∆TTE) and the open circuit voltage (Uoc) both increased with increasing d, but the growth rate gradually decreased. When d is greater than 0.2 mm, the increment basically becomes negligible. The maximum output power (Pmax) first increases and then decreases with increasing d, reaching a maximum value when d is 0.2 mm. Therefore, we can optimize the size of device according to the simulation results to ensure that the device produces the optimal output performance during the experiments. A model with the same parameters used in the experiment (i.e., d=0.2 mm) was then established and it generated a Uoc of 35.2 mV and a Pmax of 228.8 μW when Th-c was 107.5 K (∆TTE = 97.55 K). The errors between the simulation and the experimental results are small and thus also verify the accuracy of the power generation performance test results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

499-508

Citation:

Online since:

September 2020

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhang Q H, Huang X Y, Bai S Q, et al. Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges[J]. Advanced Engineering Materials, 2016, 18(2): 194-213.

DOI: 10.1002/adem.201500333

Google Scholar

[2] Du Y, Xu J, Paul B, et al. Flexible thermoelectric materials and devices[J]. Applied Materials Today, 2018, 12: 366-388.

DOI: 10.1016/j.apmt.2018.07.004

Google Scholar

[3] Hao F, Qiu P, Tang Y, et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 degrees C[J]. Energy & Environmental Science, 2016, 9(10): 3120-3127.

DOI: 10.1039/c6ee02017h

Google Scholar

[4] Perumal S, Roychowdhury S, Biswas K. High performance thermoelectric materials and devices based on GeTe[J]. Journal Of Materials Chemistry C, 2016, 4(32): 7520-7536.

DOI: 10.1039/c6tc02501c

Google Scholar

[5] Chen L, Meng F, Sun F. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts[J]. Science China-Technological Sciences, 2016, 59(3): 442-455.

DOI: 10.1007/s11431-015-5970-5

Google Scholar

[6] Featherston C A, Holford K M, Waring G. Thermoelectric Energy Harvesting For Wireless Sensor Systems in Aircraft [M]//CHU F, OUYANG H, SILBERSCHMIDT V, et al. Damage Assessment of Structures Viii. 2009: 487-494.

DOI: 10.4028/www.scientific.net/kem.413-414.487

Google Scholar

[7] Deng F, Qiu H, Chen J, et al. Wearable Thermoelectric Power Generators Combined With Flexible Supercapacitor for Low-Power Human Diagnosis Devices[J]. Ieee Transactions on Industrial Electronics, 2017, 64(2): 1477-1485.

DOI: 10.1109/tie.2016.2613063

Google Scholar

[8] He R, Schierning G, Nielsch K. Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization[J]. Advanced Materials Technologies, 2018, 3(4).

DOI: 10.1002/admt.201700256

Google Scholar

[9] Ito M, Koizumi T, Kojima H, et al. From materials to device design of a thermoelectric fabric for wearable energy harvesters[J]. Journal of Materials Chemistry A, 2017, 5(24): 12068-12072.

DOI: 10.1039/c7ta00304h

Google Scholar

[10] Arai K, Akimoto H, Kineri T, et al. Preparation and thermoelectric properties of TE module by a spark plasma sintering method [M]//SHINOZAKI K, FUJIHARA S, CHAZONO H. Electroceramics in Japan Xiv. 2011: 169-+.

DOI: 10.4028/www.scientific.net/kem.485.169

Google Scholar

[11] Mu E, Yang G, Fu X, et al. Fabrication and characterization of ultrathin thermoelectric device for energy conversion[J]. Journal Of Power Sources, 2018, 394: 17-25.

DOI: 10.1016/j.jpowsour.2018.05.031

Google Scholar

[12] Van Thanh D, Dzung Viet D, Yamada T, et al. Integration of SWNT film into MEMS for a micro-thermoelectric device[J]. Smart Materials and Structures, 2010, 19(7).

Google Scholar

[13] Su N, Guo S, Li F, et al. Micro-thermoelectric devices with large output power fabricated on a multi-channe glass template[J]. Journal of Micromechanics and Microengineering, 2018, 28(12).

DOI: 10.1088/1361-6439/aae4b0

Google Scholar

[14] Liu D-W, Li J-F. Microfabrication of thermoelectric modules by patterned electrodeposition using a multi-channel glass template[J]. Journal of Solid State Electrochemistry, 2011, 15(3): 479-484.

DOI: 10.1007/s10008-010-1104-y

Google Scholar

[15] Snyder G J, Lim J R, Huang C K, et al. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process[J]. Nature Materials, 2003, 2(8): 528-531.

DOI: 10.1038/nmat943

Google Scholar

[16] Kao P-H, Shih P-J, Dai C-L, et al. Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators[J]. Sensors, 2010, 10(2): 1315-1325.

DOI: 10.3390/s100201315

Google Scholar

[17] Liu T, Liao X. Simulation of characteristic of a thermoelectric power sensor based on MEMS technology [M]//WANG X H. Micro-Nano Technology Xiii. 2012: 91-96.

DOI: 10.4028/www.scientific.net/kem.503.91

Google Scholar

[18] Dawei L, Li J-F. Fabrication and Performance Simulation of Microscale Thermoelectric Modules made with Bi2Te3-based Alloys [M]//WANG X H. Mems/Nems Nano Technology. 2011: 75-77.

Google Scholar

[19] Kim M-Y, Oh T-S. Thermoelectric Thin Film Device of Cross-Plane Configuration Processed by Electrodeposition and Flip-Chip Bonding[J]. Materials Transactions, 2012, 53(12): 2160-2165.

DOI: 10.2320/matertrans.m2012265

Google Scholar

[20] Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597-602.

DOI: 10.1038/35098012

Google Scholar

[21] Martin J, Manzano C V, Caballero-Calero O, et al. High-Aspect-Ratio and Highly Ordered 15-nm Porous Alumina Templates[J]. Acs Applied Materials & Interfaces, 2013, 5(1): 72-79.

DOI: 10.1021/am3020718

Google Scholar

[22] Wang Z, Qi Y, Zhang M, et al. Thermoelectric Device Based on Vertical Silicon Nanowires for On-Chip Integration [M]//TANG F. Micro-Nano Technology Xv. 2014: 789-795.

DOI: 10.4028/www.scientific.net/kem.609-610.789

Google Scholar

[23] Ren D, Yang Z, Chang Y, et al. Fabrication of Bi2Te3 nanowires applied in thermoelectric generators [M]//TANG F. Micro-Nano Technology Xv. 2014: 306-310.

Google Scholar

[24] Li J F, Tanaka S, Umeki T, et al. Microfabrication of thermoelectric materials by silicon molding process[J]. Sensors and Actuators a-Physical, 2003, 108(1-3): 97-102.

DOI: 10.1016/s0924-4247(03)00369-8

Google Scholar

[25] Lim J R, Whitacre J F, Fleurial J P, et al. Fabrication method for thermoelectric nanodevices[J]. Advanced Materials, 2005, 17(12): 1488-1492.

DOI: 10.1002/adma.200401189

Google Scholar

[26] Liu D-W, Xu Y, Li J-F. Electrodeposition of Bi(2)Te(3) films and micro-pillar arrays on p-Si(100) wafers[J]. Physica Status Solidi a-Applications and Materials Science, 2010, 207(2): 354-359.

DOI: 10.1002/pssa.200925149

Google Scholar

[27] Ji F, Wang C, Sun S, et al. Application of 3-D FEM in the simulation analysis for MFL signals[J]. Insight, 2009, 51(1): 32-35.

Google Scholar

[28] Li L C, Tang C A, Li G, et al. Numerical Simulation of 3D Hydraulic Fracturing Based on an Improved Flow-Stress-Damage Model and a Parallel FEM Technique[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 801-818.

DOI: 10.1007/s00603-012-0252-z

Google Scholar

[29] Liao M, He Z, Jiang C, et al. A three-dimensional model for thermoelectric generator and the influence of Peltier effect on the performance and heat transfer[J]. Applied Thermal Engineering, 2018, 133: 493-500.

DOI: 10.1016/j.applthermaleng.2018.01.080

Google Scholar

[30] Fraisse G, Ramousse J, Sgorlon D, et al. Comparison of different modeling approaches for thermoelectric elements[J]. Energy Conversion and Management, 2013, 65: 351-356.

DOI: 10.1016/j.enconman.2012.08.022

Google Scholar

[31] Ferreira-Teixeira S, Pereira A M. Geometrical optimization of a thermoelectric device: Numerical simulations[J]. Energy Conversion and Management, 2018, 169: 217-227.

DOI: 10.1016/j.enconman.2018.05.030

Google Scholar

[32] Shittu S, Li G, Zhao X, et al. High performance and thermal stress analysis of a segmented annular thermoelectric generator[J]. Energy Conversion and Management, 2019, 184: 180-193.

DOI: 10.1016/j.enconman.2019.01.064

Google Scholar

[33] Hu X, Takazawa H, Nagase K, et al. Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module[J]. Journal of Electronic Materials, 2015, 44(10): 3637-3645.

DOI: 10.1007/s11664-015-3898-y

Google Scholar

[34] Liu D-W, Li J-F, Chen C, et al. Fabrication and evaluation of microscale thermoelectric modules of Bi2Te3-based alloys[J]. Journal of Micromechanics and Microengineering, 2010, 20(12).

Google Scholar