[1]
Zhang Q H, Huang X Y, Bai S Q, et al. Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges[J]. Advanced Engineering Materials, 2016, 18(2): 194-213.
DOI: 10.1002/adem.201500333
Google Scholar
[2]
Du Y, Xu J, Paul B, et al. Flexible thermoelectric materials and devices[J]. Applied Materials Today, 2018, 12: 366-388.
DOI: 10.1016/j.apmt.2018.07.004
Google Scholar
[3]
Hao F, Qiu P, Tang Y, et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 degrees C[J]. Energy & Environmental Science, 2016, 9(10): 3120-3127.
DOI: 10.1039/c6ee02017h
Google Scholar
[4]
Perumal S, Roychowdhury S, Biswas K. High performance thermoelectric materials and devices based on GeTe[J]. Journal Of Materials Chemistry C, 2016, 4(32): 7520-7536.
DOI: 10.1039/c6tc02501c
Google Scholar
[5]
Chen L, Meng F, Sun F. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts[J]. Science China-Technological Sciences, 2016, 59(3): 442-455.
DOI: 10.1007/s11431-015-5970-5
Google Scholar
[6]
Featherston C A, Holford K M, Waring G. Thermoelectric Energy Harvesting For Wireless Sensor Systems in Aircraft [M]//CHU F, OUYANG H, SILBERSCHMIDT V, et al. Damage Assessment of Structures Viii. 2009: 487-494.
DOI: 10.4028/www.scientific.net/kem.413-414.487
Google Scholar
[7]
Deng F, Qiu H, Chen J, et al. Wearable Thermoelectric Power Generators Combined With Flexible Supercapacitor for Low-Power Human Diagnosis Devices[J]. Ieee Transactions on Industrial Electronics, 2017, 64(2): 1477-1485.
DOI: 10.1109/tie.2016.2613063
Google Scholar
[8]
He R, Schierning G, Nielsch K. Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization[J]. Advanced Materials Technologies, 2018, 3(4).
DOI: 10.1002/admt.201700256
Google Scholar
[9]
Ito M, Koizumi T, Kojima H, et al. From materials to device design of a thermoelectric fabric for wearable energy harvesters[J]. Journal of Materials Chemistry A, 2017, 5(24): 12068-12072.
DOI: 10.1039/c7ta00304h
Google Scholar
[10]
Arai K, Akimoto H, Kineri T, et al. Preparation and thermoelectric properties of TE module by a spark plasma sintering method [M]//SHINOZAKI K, FUJIHARA S, CHAZONO H. Electroceramics in Japan Xiv. 2011: 169-+.
DOI: 10.4028/www.scientific.net/kem.485.169
Google Scholar
[11]
Mu E, Yang G, Fu X, et al. Fabrication and characterization of ultrathin thermoelectric device for energy conversion[J]. Journal Of Power Sources, 2018, 394: 17-25.
DOI: 10.1016/j.jpowsour.2018.05.031
Google Scholar
[12]
Van Thanh D, Dzung Viet D, Yamada T, et al. Integration of SWNT film into MEMS for a micro-thermoelectric device[J]. Smart Materials and Structures, 2010, 19(7).
Google Scholar
[13]
Su N, Guo S, Li F, et al. Micro-thermoelectric devices with large output power fabricated on a multi-channe glass template[J]. Journal of Micromechanics and Microengineering, 2018, 28(12).
DOI: 10.1088/1361-6439/aae4b0
Google Scholar
[14]
Liu D-W, Li J-F. Microfabrication of thermoelectric modules by patterned electrodeposition using a multi-channel glass template[J]. Journal of Solid State Electrochemistry, 2011, 15(3): 479-484.
DOI: 10.1007/s10008-010-1104-y
Google Scholar
[15]
Snyder G J, Lim J R, Huang C K, et al. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process[J]. Nature Materials, 2003, 2(8): 528-531.
DOI: 10.1038/nmat943
Google Scholar
[16]
Kao P-H, Shih P-J, Dai C-L, et al. Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators[J]. Sensors, 2010, 10(2): 1315-1325.
DOI: 10.3390/s100201315
Google Scholar
[17]
Liu T, Liao X. Simulation of characteristic of a thermoelectric power sensor based on MEMS technology [M]//WANG X H. Micro-Nano Technology Xiii. 2012: 91-96.
DOI: 10.4028/www.scientific.net/kem.503.91
Google Scholar
[18]
Dawei L, Li J-F. Fabrication and Performance Simulation of Microscale Thermoelectric Modules made with Bi2Te3-based Alloys [M]//WANG X H. Mems/Nems Nano Technology. 2011: 75-77.
Google Scholar
[19]
Kim M-Y, Oh T-S. Thermoelectric Thin Film Device of Cross-Plane Configuration Processed by Electrodeposition and Flip-Chip Bonding[J]. Materials Transactions, 2012, 53(12): 2160-2165.
DOI: 10.2320/matertrans.m2012265
Google Scholar
[20]
Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597-602.
DOI: 10.1038/35098012
Google Scholar
[21]
Martin J, Manzano C V, Caballero-Calero O, et al. High-Aspect-Ratio and Highly Ordered 15-nm Porous Alumina Templates[J]. Acs Applied Materials & Interfaces, 2013, 5(1): 72-79.
DOI: 10.1021/am3020718
Google Scholar
[22]
Wang Z, Qi Y, Zhang M, et al. Thermoelectric Device Based on Vertical Silicon Nanowires for On-Chip Integration [M]//TANG F. Micro-Nano Technology Xv. 2014: 789-795.
DOI: 10.4028/www.scientific.net/kem.609-610.789
Google Scholar
[23]
Ren D, Yang Z, Chang Y, et al. Fabrication of Bi2Te3 nanowires applied in thermoelectric generators [M]//TANG F. Micro-Nano Technology Xv. 2014: 306-310.
Google Scholar
[24]
Li J F, Tanaka S, Umeki T, et al. Microfabrication of thermoelectric materials by silicon molding process[J]. Sensors and Actuators a-Physical, 2003, 108(1-3): 97-102.
DOI: 10.1016/s0924-4247(03)00369-8
Google Scholar
[25]
Lim J R, Whitacre J F, Fleurial J P, et al. Fabrication method for thermoelectric nanodevices[J]. Advanced Materials, 2005, 17(12): 1488-1492.
DOI: 10.1002/adma.200401189
Google Scholar
[26]
Liu D-W, Xu Y, Li J-F. Electrodeposition of Bi(2)Te(3) films and micro-pillar arrays on p-Si(100) wafers[J]. Physica Status Solidi a-Applications and Materials Science, 2010, 207(2): 354-359.
DOI: 10.1002/pssa.200925149
Google Scholar
[27]
Ji F, Wang C, Sun S, et al. Application of 3-D FEM in the simulation analysis for MFL signals[J]. Insight, 2009, 51(1): 32-35.
Google Scholar
[28]
Li L C, Tang C A, Li G, et al. Numerical Simulation of 3D Hydraulic Fracturing Based on an Improved Flow-Stress-Damage Model and a Parallel FEM Technique[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 801-818.
DOI: 10.1007/s00603-012-0252-z
Google Scholar
[29]
Liao M, He Z, Jiang C, et al. A three-dimensional model for thermoelectric generator and the influence of Peltier effect on the performance and heat transfer[J]. Applied Thermal Engineering, 2018, 133: 493-500.
DOI: 10.1016/j.applthermaleng.2018.01.080
Google Scholar
[30]
Fraisse G, Ramousse J, Sgorlon D, et al. Comparison of different modeling approaches for thermoelectric elements[J]. Energy Conversion and Management, 2013, 65: 351-356.
DOI: 10.1016/j.enconman.2012.08.022
Google Scholar
[31]
Ferreira-Teixeira S, Pereira A M. Geometrical optimization of a thermoelectric device: Numerical simulations[J]. Energy Conversion and Management, 2018, 169: 217-227.
DOI: 10.1016/j.enconman.2018.05.030
Google Scholar
[32]
Shittu S, Li G, Zhao X, et al. High performance and thermal stress analysis of a segmented annular thermoelectric generator[J]. Energy Conversion and Management, 2019, 184: 180-193.
DOI: 10.1016/j.enconman.2019.01.064
Google Scholar
[33]
Hu X, Takazawa H, Nagase K, et al. Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module[J]. Journal of Electronic Materials, 2015, 44(10): 3637-3645.
DOI: 10.1007/s11664-015-3898-y
Google Scholar
[34]
Liu D-W, Li J-F, Chen C, et al. Fabrication and evaluation of microscale thermoelectric modules of Bi2Te3-based alloys[J]. Journal of Micromechanics and Microengineering, 2010, 20(12).
Google Scholar