[1]
S. Triwanapong, S. Angthong, and K. Kimapong, Interpass Temperature Affecting Abrasive Wear Resistance of SMAW Hard-faced Weld Metal on JIS-S50C Carbon Steel, Materials Science Forum. 950 (2019) 60-64.
DOI: 10.4028/www.scientific.net/msf.950.60
Google Scholar
[2]
M. F. Buchely, J. C. Gutierrez, L. M. León, A. Toro, The effect of microstructure on abrasive wear of hardfacing alloys, Wear. 259 (2005) 52-61.
DOI: 10.1016/j.wear.2005.03.002
Google Scholar
[3]
X. H. Wang, F. Han, X. M. Liu, S. Y. Qu, Z. D. Zou, Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings, Materials Science and Engineering: A. 489 (2008) 193-200.
DOI: 10.1016/j.msea.2007.12.020
Google Scholar
[4]
X. H. Wang, F. Han, S. Y. Qu, Z. D. Zou, Microstructure of the Fe-based hardfacing layers reinforced by TiC-VC-Mo2C particles, Surface and Coatings Technology. 202 (2008) 1502-1509.
DOI: 10.1016/j.surfcoat.2007.07.002
Google Scholar
[5]
R. A. Jeshvaghani, E. Harati, M. Shamanian, Effects of surface alloying on microstructure and wear behavior of ductile iron surface-modified with a nickel-based alloy using shielded metal arc welding, Materials & Design. 32 (2011) 1531-1536.
DOI: 10.1016/j.matdes.2010.10.006
Google Scholar
[6]
C. Fan, M. C. Chen, C. M. Chang, W. Wu, Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe–Cr–C hardfacing alloys, Surface and Coatings Technology. 201 (2006) 908-912.
DOI: 10.1016/j.surfcoat.2006.01.010
Google Scholar
[7]
C. M. Chang, Y. C. Chen, W. Wu, Microstructural and abrasive characteristics of high carbon Fe–Cr–C hardfacing alloy, Tribology International. 43 (2010) 929-934.
DOI: 10.1016/j.triboint.2009.12.045
Google Scholar
[8]
I. Hemmati, V. Ocelík, J. T. M. De Hosson, Dilution effects in laser cladding of Ni–Cr–B–Si–C hardfacing alloys, Materials Letters. 84 (2012) 69-72.
DOI: 10.1016/j.matlet.2012.06.054
Google Scholar
[9]
Y. Wu, Y. Cai, H. Wang, S. Shi, X. Hua, Y. Wu, Investigation on microstructure and properties of dissimilar joint between SA553 and SUS304 made by laser welding with filler wire, Materials & Design. 87 (2015) 567-578.
DOI: 10.1016/j.matdes.2015.08.076
Google Scholar
[10]
J. J. Coronado, H. F. Caicedo, A. L. Gómez, The effects of welding processes on abrasive wear resistance for hardfacing deposits, Tribology International. 42 (2009) 745-749.
DOI: 10.1016/j.triboint.2008.10.012
Google Scholar
[11]
S. Chatterjee, T. K. Pal, Weld procedural effect on the performance of iron based hardfacing deposits on cast iron substrate, Journal of Materials Processing Technology. 173 (2006) 61-69.
DOI: 10.1016/j.jmatprotec.2005.10.025
Google Scholar
[12]
K. Kimapong, P. Poonnayom, V. Wattanjitsiri, Microstructure and Wear Resistance of Hardfacing Weld Metal on JIS-S50C Carbon Steel in Argicultural Machine Parts, Materials Science Forum. 872 (2016) 55-61.
DOI: 10.4028/www.scientific.net/msf.872.55
Google Scholar
[13]
W. Wu, S. Hu, J. Shen, Microstructure, mechanical properties and corrosion behavior of laser welded dissimilar joints between ferritic stainless steel and carbon steel, Materials & Design. 65 (2015) 855-861.
DOI: 10.1016/j.matdes.2014.09.064
Google Scholar
[14]
A. S. Aloraier, R. N. Ibrahim, J. Ghojel, Eliminating post-weld heat treatment in repair welding by temper bead technique: role bead sequence in metallurgical changes, Journal of Materials Processing Technology. 153-154 (2004) 392-400.
DOI: 10.1016/j.jmatprotec.2004.04.383
Google Scholar
[15]
P. Poonnayom, V. Wattanajitsiri, K. Kimapong, A Machinability Study of Hard-Facing Weld Metal on JIS-S50C Carbon Steel, Key Engineering Materials. 728 (2017) 85-90.
DOI: 10.4028/www.scientific.net/kem.728.85
Google Scholar