[1]
Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371-392.
DOI: 10.1016/j.actamat.2016.07.019
Google Scholar
[2]
Li W, Yang Y, Liu J, Zhou Y, Li M, Wen S F, Wei Q S, Yan C Z, Shi Y S. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2, in-situ metal matrix composites prepared via selective laser melting[J]. Acta Materialia, 2017, 136: 90-104.
DOI: 10.1016/j.actamat.2017.07.003
Google Scholar
[3]
Guo S, Wang M, Zhao Z, Zhang Y Y, Lin X, Huang W D. Molecular dynamics simulation on the micro-structural evolution in heat-affected zone during the preparation of bulk metallic glasses with selective laser melting[J]. Journal of Alloys and Compounds, 2017, 697: 443-449.
DOI: 10.1016/j.jallcom.2016.11.393
Google Scholar
[4]
Fiocchi J, Tuissi A, Bassani P, Biffi C A. Low temperature annealing dedicated to AlSi10Mg selective laser melting products[J]. Journal of Alloys and Compounds, 2017, 695: 3402-3409.
DOI: 10.1016/j.jallcom.2016.12.019
Google Scholar
[5]
Popovich V A, Borisov E V, Popovich A A, Sufiiarov V S, Masaylo D V, Alzina L. Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties[J]. Materials & Design, 2016: 441-449.
DOI: 10.1016/j.matdes.2016.10.075
Google Scholar
[6]
Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477.
DOI: 10.1016/j.pmatsci.2015.03.002
Google Scholar
[7]
Li N, Huang S, Zhang G D, Qin R Y, Liu W, Xiong H P, Shi G Q, Blackburn J. Progress in Additive Manufacturing on New Materials[J]. Journal of Materials Science & Technology, 2019, 35: 242-269.
DOI: 10.1016/j.jmst.2018.09.002
Google Scholar
[8]
Liu B, Tan J H, Wu C L. Design of injection mould with conformal cooling channel based on 3D printing. Engineering Plastics Application[J]. 2015, 43(10): 71.
Google Scholar
[9]
Shi Y S, Wu Z G, Wei Q S, Huang S H. Effects of conformal cooling channel on injection molding and production efficiency[J]. Journal of Huazhong University of Science and Technology (Science and Technology), 2007, 35(3): 60.
Google Scholar
[10]
Fayazfar H, Salarian M, Rogalsky A, Sarker D, Russo P, Paserin V, Toyserkani E. A critical review of pow-der-based additive manufac-turing of ferrous alloys: Process parameters, microstructure and mechanical properties[J]. Materials & Design, 2018, 144.
DOI: 10.1016/j.matdes.2018.02.018
Google Scholar
[11]
Casalino G, Campanelli S L, Contuzzi N, Ludovico A D. Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel[J]. Optics & Laser Technology, 2015, 65: 151-158.
DOI: 10.1016/j.optlastec.2014.07.021
Google Scholar
[12]
Mutua J, Nakata S, Onda T, Chen Z. Optimization of selective laser melting parameters and influence of post heat treatment on micro-structure and mechanical properties of maraging steel[J]. Materials & Design, 2018, 39: 486-497.
DOI: 10.1016/j.matdes.2017.11.042
Google Scholar
[13]
Tan C, Zhou K, Ma W, Zhang P P, Liu M, Kuang T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel[J]. Materials & Design, 2017: 134:23-34.
DOI: 10.1016/j.matdes.2017.08.026
Google Scholar
[14]
Guo W F. Study of mechanical properties and heat treatment of the 18Ni300 maraging steel manufacturing by selective laser melting[D]. Harbin: Harbin Institute of Technology, (2018).
Google Scholar
[15]
Kang K. 18Ni-300 Powder Characteristics Used in Selective Laser Melting and Microstructure of Selective Laser Melted 18Ni-300 Steel[D]. Chongqing: Chongqing University, (2014).
DOI: 10.1016/j.vacuum.2018.04.044
Google Scholar