Development of Statistical Model for Selection of Electrode Parameters in Manufacturing of Ultracapacitor

Article Preview

Abstract:

Ultracapacitor is a new electrical energy storage device which has high power density than conventional battery and capacitor. It offers high capacitance in small volume compared to conventional capacitors. While selecting ultracapacitors for various applications, parameters like specific resistance, internal capacitance, pulse current, energy density are required to be considered. Amongst these factors, specific capacitance of ultracapacitor depends mainly on parameters of electrode. The present paper is focused on modeling of ultracapacitor based on variations in some of the electrode parameters. The objective of present research work is to apply a statistical method to obtain an electrode material based model for prismatic type ultracapacitor. To have deep insight about the performance through modeling approach, the number of trials have been taken by doing the variations in the electrode materials of ultracapacitor and the quantity of the electrode material loaded on the current collector. The effect of both these variations is studied over the specific capacitance, which is taken as output parameter of model. Developed model is validated at selected values of input parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-27

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sarfraz, I. Shakir, Recent advances in layered double hydroxides as electrode materials for high-performance electrochemical energy storage devices, J. Energy Storage, 13 (2017) 103-122.

DOI: 10.1016/j.est.2017.06.011

Google Scholar

[2] E. Goiklea, A. Balducci, K. Naoi, P. L. Taberna, M. Salanne, G. Yushin, Materials for supercapacitors: when Li-ion battery is not enough, Mater. Today, 21(4) (2018) 419-436.

DOI: 10.1016/j.mattod.2018.01.035

Google Scholar

[3] T. C. Gonsalves, et al. Electrochemical Characteristics and Microstructures of Activated Carbon Powder Supercapacitors for Energy Storage, Mater. Sci. Forum, 930 (2018) 597-602.

DOI: 10.4028/www.scientific.net/msf.930.597

Google Scholar

[4] M. L. Mao, et al. Metal-Organic Frameworks/Carboxyl Graphene Derived Porous Carbon as a Promising Supercapacitor Electrode Material, Key Eng. Mater. 727 (2017) 756-763.

DOI: 10.4028/www.scientific.net/kem.727.756

Google Scholar

[5] A. M. Obeidat, A. G. Mohammad, M. Obaidat, Solid-state ultracapacitors with ionic liquid gel polymer electrolyte and polypyrrole electrodes for electrical energy storage, J. Energy Storage, 13 (2017) 123-128.

DOI: 10.1016/j.est.2017.07.010

Google Scholar

[6] M. Ates, N. Uludag, T. Karazehir, F. Arıcan, Ultracapacitor Behavior of Poly(Carbazole-EDOT) Derivatives/multi-walled carbon nanotubes, characterizations and equivalent circuit model evaluations, J. Polym. Plastics Technol. Eng. 53(10) (2014) 1070-1081.

DOI: 10.1080/03602559.2014.886072

Google Scholar

[7] L. S. Godse, V. N. Karkaria, M. J. Bhalerao, S. Khatua, P. B. Karandikar, Electrode-Electrolyte compatibility for superior performance of supercapacitor, Int. Conf. power Electronics Appl. Technol. (2019).

DOI: 10.1109/petpes47060.2019.9003864

Google Scholar

[8] A. R. Mainar, E. Iruin, L. C. Colmenares, A. Kvasha, An overview of progress in electrolytes fo secondary zinc-air batteries and other storage systems based on zinc, J. Energy Storage, 15 (2018) 304-328.

DOI: 10.1016/j.est.2017.12.004

Google Scholar

[9] K. M. Lee, M. J. Kim, K. S. Lee, Nylon 6, 6/polyaniline based sheath nanofibres for high performance supercapacitors, J. Eletrochimica Acta, 213 (2016) 124-131.

DOI: 10.1016/j.electacta.2016.07.104

Google Scholar

[10] P. Mandake, P. B Karandikar, Effect of separator thickness variation for supercappacitor with polythylene separator material, IJSRSET, 2(2) (2016) 967-971.

Google Scholar

[11] H. Upriti, A. Dixit, Shailendra, A. Paul, P. B. Karandikar, Optimization of electrode factors of stacked structured ultracapacitor, Energy Procedia, 54(6) (2014) 367-375.

DOI: 10.1016/j.egypro.2014.07.280

Google Scholar

[12] P. B. Karandikar, D. B. Talange, U. Mhaskar, R. Bansal, Investigations for parameter improvement of manganese oxide based aqueous ultracapacitor, Mater. Manufact. Process. 11(1) (2012) 1164-1170.

DOI: 10.1080/10426914.2012.663139

Google Scholar

[13] P. B.Karandikar, D. B.Talange, U. Mhaskar, R. Bansal, Validation of capacitance and ESR model of manganese oxide based aqueous ultracapacitor, Electric Power Components Syst. 10(1) (2012) 1105-1118.

DOI: 10.1080/15325008.2012.682247

Google Scholar

[14] C. T. Pham, D. Månsson, Experimental validation of a general energy storage modeling approach (Part III), J. Energy Storage, 20 (2018) 542-550.

DOI: 10.1016/j.est.2018.09.023

Google Scholar

[15] W. Luo, H. Xue, The Synthesis and Elechemical Performance of NiCo2O4 embedded Carbon nanofibers for high-performance supercapacitors, J. Fullerenes Nanotubes Carbon Nanostruct. 27(3) (2019) 189-197.

DOI: 10.1080/1536383x.2018.1538131

Google Scholar

[16] K. Manikanda, T. Pradheep, S. Suresh, Application of Tauguchi and Response Surface Methodology (RSM) in Steel Turning Process toImprove Surface Roughness and Material Removal Rate, Mater. today:PROCEEDINGS, 5(11) (2018) 24622-24631.

DOI: 10.1016/j.matpr.2018.10.260

Google Scholar