[1]
N. Fonstein, Advanced high strength sheet steels: Physical metallurgy, design, processing, and properties, Springer International Publishing, Switzerland, (2015).
DOI: 10.1007/978-3-319-19165-2_7
Google Scholar
[2]
E.A. Da Silva, L.F.V. Malerba Fernandes, J.W. De Jesus Silva, R.B. Ribeiro, M. Dos Santos Pereira, A comparison between an advanced high-strength steel and a high-strength steel due to the spring back effect, IOSR Journal of Mechanical and Civil Engineering. 13(5) (2016) 21-27.
DOI: 10.9790/1684-1305012127
Google Scholar
[3]
C. Lesch, N. Kwiaton, F.B. Klose, Advanced high strength steels (AHSS) for automotive applications − tailored properties by smart microstructural adjustments, Steel Res. Int. 88 (10) (2017) 1700210.
DOI: 10.1002/srin.201700210
Google Scholar
[4]
W. Bleck, X. Guo, Y. Ma, The TRIP effect and its application in cold formable sheet steels, Steel Res. Int. 88(10) (2019) 1700218.
DOI: 10.1002/srin.201700218
Google Scholar
[5]
D. Bublíková, Š. Jeníček, I. Vorel, B. Mašek, New heat treatment process for advanced high-strength steels, IOP Conf. Series: Materials Science and Engineering. 179 (2017) 012009.
DOI: 10.1088/1757-899x/179/1/012009
Google Scholar
[6]
Z. M. Rykavets, J. Bouquerel, J.-B. Vogt, Z.A. Duriagina, V.V. Kulyk, T. L. Tepla, L.I. Bohun, T.M. Kovbasyuk, Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue, Usp. Fiz. Met. 20(4) (2019) 620–633.
DOI: 10.15407/ufm.20.04.620
Google Scholar
[7]
О. Sukhova, Yu. Syrovatko, Features of structurization of composite materials of the solution-and-diffusion type, Metallofiz. Noveishie Tekhnol. 33 (Special Issue) (2011) 371-378.
Google Scholar
[8]
X. Tan, H. He, W. Lu, L. Yang, B. Tang, J. Yan, Y. Xu, D. Wu, Effect of matrix structures on TRIP effect and mechanical properties of low-C low-Si Al-added hot-rolled TRIP steels, Mater. Sci. Eng., A. 771 (2020), 138629.
DOI: 10.1016/j.msea.2019.138629
Google Scholar
[9]
V. Kukhar, E. Balalayeva, A. Prysiazhnyi, O. Vasylevskyi, I. Marchenko, Analysis of relation between edging ratio and deformation work done in pre-forming of workpiece by bulk buckling, MATEC Web of Conferences. 178 (2018) 02003.
DOI: 10.1051/matecconf/201817802003
Google Scholar
[10]
B.L. Ennis, E. Jimenez-Melero, E.H. Atzem, M. Krugl, M.A. Azeem, D. Rowley, D. Daisenbergere, D.N. Hanlon, P.D. Lee, Metastable austenite driven work-hardening behaviour in a TRIP-assisted dual phase steel, Int. J. Plast. 88 (2017) 126-139.
DOI: 10.1016/j.ijplas.2016.10.005
Google Scholar
[11]
L.S. Malinov, I.E. Malysheva, E.S. Klimov, V.V. Kukhar, E. Balalayeva, Effect of particular combinations of quenching, tempering and carburization on abrasive wear of low-carbon manganese steels with metastable austenite, Materials Science Forum. 945 MSF (2019) 574-578.
DOI: 10.4028/www.scientific.net/msf.945.574
Google Scholar
[12]
V.G. Efremenko, V.I. Zurnadzhi, Y.G. Chabak, O.V. Tsvetkova, A.V. Dzherenova, Application of the Q-n-P-treatment for increasing the wear resistance of low-alloy steel with 0.75% C, Material Science. 53 (2017) 67-75.
DOI: 10.1007/s11003-017-0045-3
Google Scholar
[13]
O.P. Ostash, V.V. Kulyk, V.D. Poznyakov, O.A. Haivorons'kyi, L.I. Markashova, V.V. Vira, Z.A. Duriagina, T.L. Tepla, Fatigue crack growth resistance of welded joints simulating the weld-repaired railway wheels metal, Arch. Mater. Sci. Eng. 86 (2017) 49-52.
DOI: 10.5604/01.3001.0010.4885
Google Scholar
[14]
P.I. Christodoulou, A.T. Kermanidis, D. Krizan, Fatigue behavior and retained austenite transformation of Al-containing TRIP steels. Int. J. Fatigue. 91(Part 1) (2016) 220-231.
DOI: 10.1016/j.ijfatigue.2016.06.004
Google Scholar
[15]
B. Efremenko, A. Belik, Yu. Chabak, H. Halfa, Simulation of structure formation in the Fe–C–Cr–Ni–Si surfacing materials, Eastern-European Journal of Enterprise Technologies. 2 (2018) 33-38.
DOI: 10.15587/1729-4061.2018.124129
Google Scholar
[16]
J.J. Guzman-Aguilera, C.J. Martinez-Gonzalez, V.H. Baltazar-Hernandez, S. Basak, S.K. Panda, M.H. Razmpoosh, A. Gerlich, Y.Zhou. Influence of SC-HAZ microstructure on the mechanical behavior of Si-TRIP steel welds, Mater. Sci. Eng., A. 718 (2018) 216-227.
DOI: 10.1016/j.msea.2018.01.108
Google Scholar
[17]
E. Emadoddin, A. Akbarzadeh, Gh. Daneshi, Effect of intercritical annealing on retained austenite characterization in textured TRIP-assisted steel sheet, Mater. Charact. 57(4-5) (2006) 408-413.
DOI: 10.1016/j.matchar.2006.04.006
Google Scholar
[18]
V.I. Zurnadzhy, V.G. Efremenko, K.M. Wu, A.Yu. Azarkhov, Yu.G. Chabak , V.L. Greshta, O.B. Isayev, M.V. Pomazkov, Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel. Mater. Sci. Eng., A. 745 (2019) 307-318.
DOI: 10.1016/j.msea.2018.12.106
Google Scholar
[19]
S. Kang, J.G. Speer, D. Krizan, D.K. Matlock, E.De Moor, Prediction of tensile properties of intercritically annealed Al-containing 0.19C–4.5Mn (wt%) TRIP steels, Mater. Des. 97 (2016) 138-146.
DOI: 10.1016/j.matdes.2016.02.058
Google Scholar
[20]
J. Lis, J. Morgiel, A. Lis, The effect of Mn partitioning in Fe–Mn–Si alloy investigated with STEM-EDS techniques, Mater. Chem. Phys. 81(2-3) (2003) 466-468.
DOI: 10.1016/s0254-0584(03)00053-1
Google Scholar
[21]
B. Fu, W.Y. Yang, Y.D. Wang, L.F. Li, Z.Q. Sun, Y. Ren, Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction, Acta Mater. 76 (2014) 342-354.
DOI: 10.1016/j.actamat.2014.05.029
Google Scholar
[22]
M. Zhang, W. Cao, H. Dong, J. Zhu, Element partitioning effect on microstructure and mechanical property of the micro-laminated Fe–Mn–Al–C dual phase steel, Mater. Sci. Eng., A. 654 (2016) 193-202.
DOI: 10.1016/j.msea.2015.12.029
Google Scholar
[23]
Z.H. Cai, H. Ding, H. Kamoutsi, G.N. Haidemenopoulos, R.D.K. Misra, Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel, Mater. Sci. Eng., A. 654 (2016) 359-367.
DOI: 10.1016/j.msea.2015.12.057
Google Scholar
[24]
Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, C.J. Shang, Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel, Mater. Des. 59 (2014) 193-198.
DOI: 10.1016/j.matdes.2014.02.035
Google Scholar
[25]
Yu.G. Chabak, V.I. Fedun, T.V. Pastukhova, V.I. Zurnadzhy, S.P. Berezhnyy, V.G. Efremenko, Modification of steel surface by pulsed plasma heating, Probl. At. Sci. Technol., Ser.: Plasma Phys. 110 (4) (2017) 97-102.
DOI: 10.30970/jps.24.2501
Google Scholar
[26]
L.E. Popova, A.A. Popov, Diagrams of transformation of austenite in steels and β-solution in titanium alloys [in Russian], Metallurgiya, Moscow, (1991).
Google Scholar
[27]
M.A. Goldshtein, V.S. Litvinov, B.M. Bronfin, Metallophysics of high strength alloys [in Russian], Metallurgia, Moscow, (1986).
Google Scholar
[28]
F.H. Akbary, J. Sietsma, G. Miyamoto, N. Kamikawa, R.H. Petrov, T. Furuhara, M. J. Santofimia Analysis of themechanical behavior of a 0.3C-1.6Si-3.5Mn(wt%) quenching and partitioning steel, Mater. Sci. Eng., A. 677 (2016) 505–514.
DOI: 10.1016/j.msea.2016.09.087
Google Scholar