Austenite Transformation Behavior and Mechanical Properties of Constructional V, Nb-Alloyed TRIP-Assisted Steel

Article Preview

Abstract:

The present article is aimed at studying the austenite transformation kinetics and tensile properties of constructional 0.2 wt%C-Si2Mn2CrMoVNb TRIP-assisted steel subjected to isothermal holding in the subcritical temperature range (350-650 °C with the step of 50 °C) after intercritical annealing at 770 °C. The study was fulfilled using optical microscopy (OLYMPUS GX-71), electron scanning microscopy (JEOL JSM-), dilatometric analysis, tensile testing, Vickers hardness measurements. The critical temperatures of the steel were found to be Ac1=750-760 °C and Ac3=930 °C. The results showed that austenite demonstrated increased stability to pearlite and bainite transformations with an incubation period of decades of seconds at any of the mentioned temperatures. The bainitizing treatment at 400 °C with holding of 300-600 s resulted in ferrite/bainite/retained austenite structure with precipitates of nanosized carbide (V,Nb)C providing an improved combination of mechanical properties as compared to direct quenching (YS=548-555 MPa, UTS=908-1000 MPa, total elongation=16-18 %, PSE index=14.6-18.0 GPa%, YS/UTS ratio=0.55-0.60). The contributions of different strengthening components were estimated in order to reveal the benefits of a multi-phase microstructure for constructional applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-249

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Fonstein, Advanced high strength sheet steels: Physical metallurgy, design, processing, and properties, Springer International Publishing, Switzerland, (2015).

DOI: 10.1007/978-3-319-19165-2_7

Google Scholar

[2] E.A. Da Silva, L.F.V. Malerba Fernandes, J.W. De Jesus Silva, R.B. Ribeiro, M. Dos Santos Pereira, A comparison between an advanced high-strength steel and a high-strength steel due to the spring back effect, IOSR Journal of Mechanical and Civil Engineering. 13(5) (2016) 21-27.

DOI: 10.9790/1684-1305012127

Google Scholar

[3] C. Lesch, N. Kwiaton, F.B. Klose, Advanced high strength steels (AHSS) for automotive applications − tailored properties by smart microstructural adjustments, Steel Res. Int. 88 (10) (2017) 1700210.

DOI: 10.1002/srin.201700210

Google Scholar

[4] W. Bleck, X. Guo, Y. Ma, The TRIP effect and its application in cold formable sheet steels, Steel Res. Int. 88(10) (2019) 1700218.

DOI: 10.1002/srin.201700218

Google Scholar

[5] D. Bublíková, Š. Jeníček, I. Vorel, B. Mašek, New heat treatment process for advanced high-strength steels, IOP Conf. Series: Materials Science and Engineering. 179 (2017) 012009.

DOI: 10.1088/1757-899x/179/1/012009

Google Scholar

[6] Z. M. Rykavets, J. Bouquerel, J.-B. Vogt, Z.A. Duriagina, V.V. Kulyk, T. L. Tepla, L.I. Bohun, T.M. Kovbasyuk, Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue, Usp. Fiz. Met. 20(4) (2019) 620–633.

DOI: 10.15407/ufm.20.04.620

Google Scholar

[7] О. Sukhova, Yu. Syrovatko, Features of structurization of composite materials of the solution-and-diffusion type, Metallofiz. Noveishie Tekhnol. 33 (Special Issue) (2011) 371-378.

Google Scholar

[8] X. Tan, H. He, W. Lu, L. Yang, B. Tang, J. Yan, Y. Xu, D. Wu, Effect of matrix structures on TRIP effect and mechanical properties of low-C low-Si Al-added hot-rolled TRIP steels, Mater. Sci. Eng., A. 771 (2020), 138629.

DOI: 10.1016/j.msea.2019.138629

Google Scholar

[9] V. Kukhar, E. Balalayeva, A. Prysiazhnyi, O. Vasylevskyi, I. Marchenko, Analysis of relation between edging ratio and deformation work done in pre-forming of workpiece by bulk buckling, MATEC Web of Conferences. 178 (2018) 02003.

DOI: 10.1051/matecconf/201817802003

Google Scholar

[10] B.L. Ennis, E. Jimenez-Melero, E.H. Atzem, M. Krugl, M.A. Azeem, D. Rowley, D. Daisenbergere, D.N. Hanlon, P.D. Lee, Metastable austenite driven work-hardening behaviour in a TRIP-assisted dual phase steel, Int. J. Plast. 88 (2017) 126-139.

DOI: 10.1016/j.ijplas.2016.10.005

Google Scholar

[11] L.S. Malinov, I.E. Malysheva, E.S. Klimov, V.V. Kukhar, E. Balalayeva, Effect of particular combinations of quenching, tempering and carburization on abrasive wear of low-carbon manganese steels with metastable austenite, Materials Science Forum. 945 MSF (2019) 574-578.

DOI: 10.4028/www.scientific.net/msf.945.574

Google Scholar

[12] V.G. Efremenko, V.I. Zurnadzhi, Y.G. Chabak, O.V. Tsvetkova, A.V. Dzherenova, Application of the Q-n-P-treatment for increasing the wear resistance of low-alloy steel with 0.75% C, Material Science. 53 (2017) 67-75.

DOI: 10.1007/s11003-017-0045-3

Google Scholar

[13] O.P. Ostash, V.V. Kulyk, V.D. Poznyakov, O.A. Haivorons'kyi, L.I. Markashova, V.V. Vira, Z.A. Duriagina, T.L. Tepla, Fatigue crack growth resistance of welded joints simulating the weld-repaired railway wheels metal, Arch. Mater. Sci. Eng. 86 (2017) 49-52.

DOI: 10.5604/01.3001.0010.4885

Google Scholar

[14] P.I. Christodoulou, A.T. Kermanidis, D. Krizan, Fatigue behavior and retained austenite transformation of Al-containing TRIP steels. Int. J. Fatigue. 91(Part 1) (2016) 220-231.

DOI: 10.1016/j.ijfatigue.2016.06.004

Google Scholar

[15] B. Efremenko, A. Belik, Yu. Chabak, H. Halfa, Simulation of structure formation in the Fe–C–Cr–Ni–Si surfacing materials, Eastern-European Journal of Enterprise Technologies. 2 (2018) 33-38.

DOI: 10.15587/1729-4061.2018.124129

Google Scholar

[16] J.J. Guzman-Aguilera, C.J. Martinez-Gonzalez, V.H. Baltazar-Hernandez, S. Basak, S.K. Panda, M.H. Razmpoosh, A. Gerlich, Y.Zhou. Influence of SC-HAZ microstructure on the mechanical behavior of Si-TRIP steel welds, Mater. Sci. Eng., A. 718 (2018) 216-227.

DOI: 10.1016/j.msea.2018.01.108

Google Scholar

[17] E. Emadoddin, A. Akbarzadeh, Gh. Daneshi, Effect of intercritical annealing on retained austenite characterization in textured TRIP-assisted steel sheet, Mater. Charact. 57(4-5) (2006) 408-413.

DOI: 10.1016/j.matchar.2006.04.006

Google Scholar

[18] V.I. Zurnadzhy, V.G. Efremenko, K.M. Wu, A.Yu. Azarkhov, Yu.G. Chabak , V.L. Greshta, O.B. Isayev, M.V. Pomazkov, Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel. Mater. Sci. Eng., A. 745 (2019) 307-318.

DOI: 10.1016/j.msea.2018.12.106

Google Scholar

[19] S. Kang, J.G. Speer, D. Krizan, D.K. Matlock, E.De Moor, Prediction of tensile properties of intercritically annealed Al-containing 0.19C–4.5Mn (wt%) TRIP steels, Mater. Des. 97 (2016) 138-146.

DOI: 10.1016/j.matdes.2016.02.058

Google Scholar

[20] J. Lis, J. Morgiel, A. Lis, The effect of Mn partitioning in Fe–Mn–Si alloy investigated with STEM-EDS techniques, Mater. Chem. Phys. 81(2-3) (2003) 466-468.

DOI: 10.1016/s0254-0584(03)00053-1

Google Scholar

[21] B. Fu, W.Y. Yang, Y.D. Wang, L.F. Li, Z.Q. Sun, Y. Ren, Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction, Acta Mater. 76 (2014) 342-354.

DOI: 10.1016/j.actamat.2014.05.029

Google Scholar

[22] M. Zhang, W. Cao, H. Dong, J. Zhu, Element partitioning effect on microstructure and mechanical property of the micro-laminated Fe–Mn–Al–C dual phase steel, Mater. Sci. Eng., A. 654 (2016) 193-202.

DOI: 10.1016/j.msea.2015.12.029

Google Scholar

[23] Z.H. Cai, H. Ding, H. Kamoutsi, G.N. Haidemenopoulos, R.D.K. Misra, Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel, Mater. Sci. Eng., A. 654 (2016) 359-367.

DOI: 10.1016/j.msea.2015.12.057

Google Scholar

[24] Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, C.J. Shang, Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel, Mater. Des. 59 (2014) 193-198.

DOI: 10.1016/j.matdes.2014.02.035

Google Scholar

[25] Yu.G. Chabak, V.I. Fedun, T.V. Pastukhova, V.I. Zurnadzhy, S.P. Berezhnyy, V.G. Efremenko, Modification of steel surface by pulsed plasma heating, Probl. At. Sci. Technol., Ser.: Plasma Phys. 110 (4) (2017) 97-102.

DOI: 10.30970/jps.24.2501

Google Scholar

[26] L.E. Popova, A.A. Popov, Diagrams of transformation of austenite in steels and β-solution in titanium alloys [in Russian], Metallurgiya, Moscow, (1991).

Google Scholar

[27] M.A. Goldshtein, V.S. Litvinov, B.M. Bronfin, Metallophysics of high strength alloys [in Russian], Metallurgia, Moscow, (1986).

Google Scholar

[28] F.H. Akbary, J. Sietsma, G. Miyamoto, N. Kamikawa, R.H. Petrov, T. Furuhara, M. J. Santofimia Analysis of themechanical behavior of a 0.3C-1.6Si-3.5Mn(wt%) quenching and partitioning steel, Mater. Sci. Eng., A. 677 (2016) 505–514.

DOI: 10.1016/j.msea.2016.09.087

Google Scholar