Fractal Model of the Influence of Expanded Clay Concrete Macrostructure on its Strength

Article Preview

Abstract:

The characteristics of the macrostructure of expanded clay concretes are compared using the topological and fractal approaches. The sensitivity of concrete strength to the fractal dimensions of a cement-sand matrix, expanded clay gravel, feldspar grains, large fractions of quartz and pores is verified. The trend of the influence of the expanded clay concrete macrostructure on its strength is determined using the fractal approach. Fractal modeling of the macrostructure of expanded clay concrete made it possible to reduce the forecast error in the indices of their strength by 1.18...2.03 times in comparison with the topological approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-52

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. New York–San Francisco: Freeman.

Google Scholar

[2] Volchuk, V., Klymenko, I., Kroviakov, S. & Orešković, M. (2018). Method of material quality estimation with usage of multifractal formalism. Tehnički glasnik - Technical Journal, 12 (2), 93-97. https://hrcak.srce.hr/202359.

DOI: 10.31803/tg-20180302115027

Google Scholar

[3] Wang Z. S., Wang L. J. & Su H. L. (2011). Experimental Research on Grading of Fine Aggregate in Frame Concrete. Advanced Materials Research, 163-167, 1085-1089. https://doi.org/10.4028/www.scientific.net/AMR.163-167.1085.

DOI: 10.4028/www.scientific.net/amr.163-167.1085

Google Scholar

[4] Volchuk, V. M. (2017). On the Application of Fractal Formalism for Ranging Criteria of Quality of Multiparametric Technologies. Metallofizika i Noveishie Tekhnologii, International Scientific and Technical Journal of the Institute of Metal Physics. G.V. Kurdyumov National Academy of Sciences of Ukraine, 39(7), 949-957. (in Russian) https://doi.org/10.15407/mfint.39.07.0949.

DOI: 10.15407/mfint.39.07.0949

Google Scholar

[5] Bolshakov, V. I., Volchuk, V. M. & Dubrov, Yu. I. (2018). Regularization of One Conditionally III-Posed Problem of Extractive Metallurgy. Metallofizika i Noveishie Tekhnologii, International Scientific and Technical Journal of the Institute of Metal Physics. G.V. Kurdyumov National Academy of Sciences of Ukraine, 40(9), 1165-1171. https://doi.org/10.15407/mfint.40.09.1165.

DOI: 10.15407/mfint.40.09.1165

Google Scholar

[6] Kroviakov, S., Volchuk, V., Zavoloka, M. & Kryzhanovskyi, V. (2019). Search for Ranking Approaches of Expanded Clay Concrete Quality Criteria. Materials Science Forum, 968, 20-25. https://doi.org/10.4028/www.scientific.net/MSF.968.20.

DOI: 10.4028/www.scientific.net/msf.968.20

Google Scholar

[7] Zhao, L., Wang, W., Li, Z. & Chen, Y. (2015). Microstructure and pore fractal dimensions of recycled thermal insulation concrete. Materials Testing, 57, 349-359. https://doi.org/10.3139/120.110713.

DOI: 10.3139/120.110713

Google Scholar

[8] Mishutn, A., Kroviakov, S., Pishev, O. & Soldo, B. (2017). Modified expanded clay light weight concretes for thin-walled reinforced concrete floating structures. Tehnički glasnik -Technical Journal, 11(3), 121-124. https://hrcak.srce.hr/186657.

Google Scholar

[9] Bolshakov, V., Volchuk, V. & Dubrov, Yu. (2016). Fractals and properties of materials. Saarbrucken, Deutschland: Lambert Academic Publishing.

Google Scholar

[10] Hausdorff, F. (1919). Dimension und äußeres Maß. Mathematische Annalen, 79, 157-179.

Google Scholar

[11] Crownover R. M. (1995). Introduction to Fractals and Chaos. Boston, London: Jones and Bartlett Publishers, Inc.

Google Scholar

[12] Lo, T.Y., Tang, W.C., Cui, H.Z. (2007). The effects of aggregate properties on lightweight concrete. Building and Environment, 42 (8), 3025-3029. https://doi.org/10.1016/j.buildenv. 2005.06.031.

DOI: 10.1016/j.buildenv.2005.06.031

Google Scholar

[13] Ke, Y., Beaucour, A.L. Ortola, S., Dumontet, H., Cabrillac, R. (2009). Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Construction and Building Materials, 23 (8), 2821-2828. https://doi.org/10.1016/j.conbuildmat.2009.02.038.

DOI: 10.1016/j.conbuildmat.2009.02.038

Google Scholar

[14] Bolshakov, V. I., & Dvorkin, L. I. (2016). Structure and Properties of Building Materials. Switzerland: Trans and Technical Publication Ltd.

Google Scholar

[15] Bolshakov, V. I. & Dubrov, Yu. I. (2002). An estimate of the applicability of fractal geometry to describe the language of qualitative transformation of materials. Journal of Reports of the National Academy of Sciences of Ukraine, 4, 116-121. (in Russian).

Google Scholar

[16] Bolshakov, V. I. & Volchuk, V. N. (2011). Materials Science Aspects of Using of Wavelet-Multifractal Approach to an Evaluation of Structure and Properties of Low-Carbon Low-Alloyed Steels. Metallofizika i Noveishie Tekhnologii, International Scientific and Technical Journal of the Institute of Metal Physics. G.V. Kurdyumov National Academy of Sciences of Ukraine, 33(3), 347-360.

DOI: 10.15407/mfint.43.06.0753

Google Scholar

[17] Zeng, Q., Li, K., Fen-Chong, T., Dangla, P. (2010) Surface fractal analysis of pore structure of high-volume fly-ash cement pastes. Applied Surface Science. 257 (3), 762-768 https://doi.org/10.1016/j.apsusc.2010.07.061.

DOI: 10.1016/j.apsusc.2010.07.061

Google Scholar

[18] Pia, G., Sanna, U. (2013) A geometrical fractal model for the porosity and thermal conductivity of insulating concrete. Construction and Building Materials. 44, 551-556.

DOI: 10.1016/j.conbuildmat.2013.03.049

Google Scholar