Study and Comparison of Characteristics of Models of Hollow-Core Slabs, Reinforced Concrete and Steel-Fiber Concrete

Article Preview

Abstract:

Two models of hollow core slabs were tested: reinforced concrete and steel fiber concrete. When designing slab models, the proportions of full-sized structures were preserved for the further possibility of correct data comparison. As a result of testing models of hollow core slabs, it was found that the bearing capacity of a slab with combined reinforcement is 24% higher than that of reinforced concrete, the deflection is 36% less, and the crack resistance is 18% higher. The use of steel fiber made it possible to avoid the brittle fracture of a steel fiber reinforced concrete slab, which was observed in the model of a conventional reinforced concrete slab.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-18

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Obozov, V. I., Belyaev, A. F. (2010). Eksperimentalnyie issledovaniya na modelyah razrusheniya monolitnyih zhelezobetonnyih perekryitiy karkasnyih zdaniy. Beton i zhelezobeton, 3, 9-12, ISSN 0005-9889.

Google Scholar

[2] Yan, J. B., Wang, J. Y., Liew, J. Y. R., Qian, X. D., Zhang, W. (2016). Reinforced ultra-lightweight cement composite flat slabs: Experiments and analysis. Materials & Design. 95, 148 – 158, doi.org/10.1016/j.matdes.2016.01.097.

DOI: 10.1016/j.matdes.2016.01.097

Google Scholar

[3] Palmer, K. D., Schultz, A. (2011). Experimental investigation of the web-shear strength of deep hollow-core units. PCI Journal, 56 (4), 83–104.

DOI: 10.15554/pcij.09012011.83.104

Google Scholar

[4] Pujadas, P., Blanco, A., De la Fuente, A., Aguado, A. (2011). Cracking behavior of FRC slabs with traditional reinforcement. Materials and Structures, 45, 707-725, doi.org/10.1617/s11527-011-9791-0.

DOI: 10.1617/s11527-011-9791-0

Google Scholar

[5] Talantova, K. V. (2008). Sozdanie elementov konstruktsiy s zadannyimi svoystvami na osnove stalefibrobetona. Izvestiya vuzov. Stroitelstvo. Novosibirsk, 10, 4 - 9.

Google Scholar

[6] di Prisco, Marco, Pourzarabi, Ali, Colombo, Matteo (2018). Biaxial bending of SFRC slabs: Is conventional reinforcement necessary?,, Department of Civil and Environmental EngineeringPolitecnico di Milano, Milan, Italy, Materials and Structures 52 (1), . doi.org/10.1617/s11527-018-1302-0.

DOI: 10.1617/s11527-018-1302-0

Google Scholar

[7] Oikonomu-Mpegetis, S. (2014). Behaviour and Design of Steel Fibre Reinforced Concrete Slabs. Structural Engineering Research Group. Department of Civil and Environmental Engineering. Imperial College London, London, SW7 2AZ, 3-352, doi.org/10.25560/23792.

DOI: 10.18057/ijasc.2011.7.1.6

Google Scholar

[8] Hrynyk, T. D., Vecchio, F. J. (2014). Behavior of Steel Fiber-Reinforced Concrete Slabs under Impact Load. ACI Structural Journal. Technical Paper, 111 (5), 1213-1224.

DOI: 10.14359/51686923

Google Scholar

[9] Barros, J. A. O., Salehian, H., Pires, N. M. M. A., Gonçalves, D. M. F. (2012). Design and Testing Elevated Steel Fibre Reinforced Self-Compacting Concrete Slabs. 8th RILEM International Symposium on Fibre Reinforced Concrete, At Guimaraes, Portugal, 2, 1156-1167.

DOI: 10.1016/j.cemconcomp.2014.09.016

Google Scholar

[10] Rusakov, A. I. (2010). Metodika opyitno-teoreticheskoy otsenki progibov monolitnoy plityi perekryitiya. Promyishlennoe i grazhd. str-v, 3, 28-32, ISSN 0869-7019.

Google Scholar

[11] Polskoy, P. P., Mailyan, D. R. (2016). Universalnyiy metod podbora kompozitnoy armaturyi dlya izgibaemyih elementov. Inzhenernyiy vestnik Dona, 4, URL: ivdon.ru/ru/magazine/archive/n4y2016/3891.

Google Scholar

[12] Serbinovskiy, P. A., Mailyan, D. R. (2016). Optimizatsiya konstruktsiy usileniya mnogopustotnyih plit perekryitiya. Inzhenernyiy vestnik Dona, 2, URL: ivdon.ru/ru/magazine/archive/n2y2016/3580.

Google Scholar

[13] Muhamediev, T. A. (2017). K voprosu rascheta fibrobetonnyih konstruktsiy. Promyishlennoe i grazhdanskoe stroitelstvo, 1, 16-20.

Google Scholar

[14] Demyanov, A. I., Kolchunov, Vl. I., Pokusaev, A. A. (2017). Eksperimentalnyie issledovaniya deformirovaniya zhelezobetonnyih konstruktsiy pri kruchenii s izgibom. Stroitelnaya mehanika inzhenernyih konstruktsiy i sooruzheniy, 6, 37-44.

Google Scholar

[15] Korneeva, I., Neutov, S., Surianinov, M. (2017). Experimental studies of fiber concrete creep. Matek Web of Conferences, 116, 02021.

DOI: 10.1051/matecconf/201711602021

Google Scholar