[1]
Obozov, V. I., Belyaev, A. F. (2010). Eksperimentalnyie issledovaniya na modelyah razrusheniya monolitnyih zhelezobetonnyih perekryitiy karkasnyih zdaniy. Beton i zhelezobeton, 3, 9-12, ISSN 0005-9889.
Google Scholar
[2]
Yan, J. B., Wang, J. Y., Liew, J. Y. R., Qian, X. D., Zhang, W. (2016). Reinforced ultra-lightweight cement composite flat slabs: Experiments and analysis. Materials & Design. 95, 148 – 158, doi.org/10.1016/j.matdes.2016.01.097.
DOI: 10.1016/j.matdes.2016.01.097
Google Scholar
[3]
Palmer, K. D., Schultz, A. (2011). Experimental investigation of the web-shear strength of deep hollow-core units. PCI Journal, 56 (4), 83–104.
DOI: 10.15554/pcij.09012011.83.104
Google Scholar
[4]
Pujadas, P., Blanco, A., De la Fuente, A., Aguado, A. (2011). Cracking behavior of FRC slabs with traditional reinforcement. Materials and Structures, 45, 707-725, doi.org/10.1617/s11527-011-9791-0.
DOI: 10.1617/s11527-011-9791-0
Google Scholar
[5]
Talantova, K. V. (2008). Sozdanie elementov konstruktsiy s zadannyimi svoystvami na osnove stalefibrobetona. Izvestiya vuzov. Stroitelstvo. Novosibirsk, 10, 4 - 9.
Google Scholar
[6]
di Prisco, Marco, Pourzarabi, Ali, Colombo, Matteo (2018). Biaxial bending of SFRC slabs: Is conventional reinforcement necessary?,, Department of Civil and Environmental EngineeringPolitecnico di Milano, Milan, Italy, Materials and Structures 52 (1), . doi.org/10.1617/s11527-018-1302-0.
DOI: 10.1617/s11527-018-1302-0
Google Scholar
[7]
Oikonomu-Mpegetis, S. (2014). Behaviour and Design of Steel Fibre Reinforced Concrete Slabs. Structural Engineering Research Group. Department of Civil and Environmental Engineering. Imperial College London, London, SW7 2AZ, 3-352, doi.org/10.25560/23792.
DOI: 10.18057/ijasc.2011.7.1.6
Google Scholar
[8]
Hrynyk, T. D., Vecchio, F. J. (2014). Behavior of Steel Fiber-Reinforced Concrete Slabs under Impact Load. ACI Structural Journal. Technical Paper, 111 (5), 1213-1224.
DOI: 10.14359/51686923
Google Scholar
[9]
Barros, J. A. O., Salehian, H., Pires, N. M. M. A., Gonçalves, D. M. F. (2012). Design and Testing Elevated Steel Fibre Reinforced Self-Compacting Concrete Slabs. 8th RILEM International Symposium on Fibre Reinforced Concrete, At Guimaraes, Portugal, 2, 1156-1167.
DOI: 10.1016/j.cemconcomp.2014.09.016
Google Scholar
[10]
Rusakov, A. I. (2010). Metodika opyitno-teoreticheskoy otsenki progibov monolitnoy plityi perekryitiya. Promyishlennoe i grazhd. str-v, 3, 28-32, ISSN 0869-7019.
Google Scholar
[11]
Polskoy, P. P., Mailyan, D. R. (2016). Universalnyiy metod podbora kompozitnoy armaturyi dlya izgibaemyih elementov. Inzhenernyiy vestnik Dona, 4, URL: ivdon.ru/ru/magazine/archive/n4y2016/3891.
Google Scholar
[12]
Serbinovskiy, P. A., Mailyan, D. R. (2016). Optimizatsiya konstruktsiy usileniya mnogopustotnyih plit perekryitiya. Inzhenernyiy vestnik Dona, 2, URL: ivdon.ru/ru/magazine/archive/n2y2016/3580.
Google Scholar
[13]
Muhamediev, T. A. (2017). K voprosu rascheta fibrobetonnyih konstruktsiy. Promyishlennoe i grazhdanskoe stroitelstvo, 1, 16-20.
Google Scholar
[14]
Demyanov, A. I., Kolchunov, Vl. I., Pokusaev, A. A. (2017). Eksperimentalnyie issledovaniya deformirovaniya zhelezobetonnyih konstruktsiy pri kruchenii s izgibom. Stroitelnaya mehanika inzhenernyih konstruktsiy i sooruzheniy, 6, 37-44.
Google Scholar
[15]
Korneeva, I., Neutov, S., Surianinov, M. (2017). Experimental studies of fiber concrete creep. Matek Web of Conferences, 116, 02021.
DOI: 10.1051/matecconf/201711602021
Google Scholar