Isomorphous Substitutions in Luminescent Materials Based on ScVO4

Article Preview

Abstract:

The aim of the paper is to define the limits of substitution and phase stability for solidsolutions of orthovanadates with zircon structure Sc1–xLnxVO4, where Ln is a rare-earth element(REE), Ln = Ce – Lu. The mixing energies (interaction parameters) and critical decompositiontemperatures of Sc1–xLnxVO4 solid solutions with the zircon structure were calculated using thecrystal-energy theory of isomorphous miscibility. Diagram of thermodynamic stability visualizingthe substitution limits (x) by the decomposition temperature or the decomposition temperature bythe substitution limits, the dependencies of the decomposition temperatures on the REE atomicnumbers is presented. This diagram also allows assessing areas of stability, instability, andmetastability for Sc1–xLnxVO4 solid solutions. Results of calculations were compared with literaturedata on thermodynamic stability of solid solutions and on substitution limits. The results of thisstudy can be used in the development of new luminescent materials based on ScVO4 modified withREE, in the selection of REE for matrix and activator, in defining optimal proportions of REE inSc1–xLnxVO4 matrices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-42

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Fotiev, B.V. Slobodin, M.Ya. Hodos, Vanadaty. Sostav, sintez, struktura, svoystva [Vanadates. Composition, synthesis, structure, properties], Moscow, Nauka, 1988 (in Russian).

Google Scholar

[2] L.G. Chumilina, Thermochemical properties of oxide compounds based on elements of group III of the periodic system of D.I. Mendeleyev: Dissertation (Institute of Metallurgy of Ural Branch of RAS, Krasnoyarsk, Russian Federation) (2016) 148 p. www.imet-uran.ru/emp/Chumilina /info.htm (accessed on 31 May 2019) (in Russian).

Google Scholar

[3] X.T. Wei, J. Wen, Sh. Li, Sh. Huang, J. Cheng, Y.H. Chen, Ch.K. Duan, M. Yin, Red-shift of vanadate band-gap by cation substitution for application in phosphor-converted white light-emitting diodes, Appl. Phys. Lett. 104 (2014) 181904-4.

DOI: 10.1063/1.4875926

Google Scholar

[4] A.I. Zagumennyi, P.A. Popov, F. Zerouk, Yu.D. Zavartsev, S.A. Kutovoi, I.A. Shcherbakov, Heat conduction of laser vanadate crystals, Quantum Electron+ 38 (2008) 227-232.

DOI: 10.1070/qe2008v038n03abeh013699

Google Scholar

[5] A.I. Zagumennyi, S.A. Kutovoi, A.A. Sirotkin, A.A. Kutovoi, V.I. Vlasov, I.D. Iskhakova, Y.D. Zavartsev, W. Luthy, T. Feurer, Spectroscopy and lasing of new mixed Nd-doped (Sc,Y)VO4 crystals, Appl. Phys. B-Lasers O. 99 (2010) 159-162.

DOI: 10.1007/s00340-009-3841-0

Google Scholar

[6] H. Cong, H. Zhang, B. Yao, W. Yu, X. Zhao, J. Wang, G. Zhang, ScVO4: Explorations of Novel Crystalline Inorganic Optical Materials in Rare-Earth Orthovanadate Systems, Cryst. Growth Des. 10 (2010) 4389-4400.

DOI: 10.1021/cg1004962

Google Scholar

[7] X. Ye, D. Wu, M. Yang, Q. Li, X. Huang, Y. Yang, H. Nie, Luminescence Properties of Fine-Grained ScVO4:Eu3+ and Sc0.93-xLnxVO4:Eu3+0.07 (Ln = Y,La,Gd,Lu) Phosphors, ECS J. Solid State Sc. 3 (2014) R95-R99.

DOI: 10.1149/2.007406jss

Google Scholar

[8] V.S. Urusov, Energetic theory of miscibility gaps in mineral solid solutions, Fortschr. Mineral. 52 (1975) 141-150.

Google Scholar

[9] E.I. Get'man, A.V. Ignatov, V.V. Prisedsky, K.V. Borysova, Complete and limited substitution of rare-earth elements in apatite silicates La(9-x)Lnx(SiO4)6O1.5, Solid State Sci. 76 (2018) 8-14.

DOI: 10.1016/j.solidstatesciences.2017.12.001

Google Scholar

[10] D.H. Templeton, Madelung Constants and Coordination, J. Chem. Phys. 21 (1953) 2097-2098.

Google Scholar

[11] K. Li, D. Xue, Estimation of Electronegativity Values of Elements in Different Valence States, J. Phys. Chem. A 110 (2006) 11332-11337.

DOI: 10.1021/jp062886k

Google Scholar

[12] S.S. Batsanov, Strukturnaya khimiya. Fakty i zavisimosti [Structural chemistry. Facts and dependencies], Moscow, Dialog-MSU, 2000 (in Russian).

Google Scholar

[13] S.S. Batsanov, The Concept of Electronegativity. Conclusions and Prospects, Russ. Chem. Rev. 37 (1968) 332-351.

DOI: 10.1070/rc1968v037n05abeh001639

Google Scholar

[14] E.I. Get'man, Izomorfnye zameshcheniia v volframatnyh i molybdatnyh sistemah [Isomorphous Substitutions in Tungstate and Molybdate Systems], Novosibirsk, Nauka, 1985 (in Russian).

Google Scholar

[15] R. Becker, Über den Aufbau binarer Legierungen (On the constitution of binary alloys), Z. Metallkd. 29 (1937) 245-249. (in German).

Google Scholar

[16] E.I. Get'man, S.V. Radio, L.B. Ignatova, L.I. Ardanova, Energies of Mixing (Interaction Parameters), Substitution Limits, and Phase Stability of Solid Solutions Lu1 – xLnxVO4 (Ln = Ce–Yb, Sc, Y), Russ. J. Inorg. Chem. 64 (2019) 118–124.

DOI: 10.1134/s0036023619010091

Google Scholar

[17] F. Kang, M. Peng, X. Yang, G. Dong, G. Nie, W. Liang, Sh. Xu, J. Qiu, Broadly tuning Bi3+ emission via crystal field modulation in solid solution compounds (Y,Lu,Sc)VO4:Bi for ultraviolet converted white LEDs, J. Mater. Chem. C, 2 (2014) 6068-6076.

DOI: 10.1039/c4tc00238e

Google Scholar

[18] R.J. Lundgren, L.M.D. Cranswick, M. Bieringer, Phase Stability, Structural Evolution and Magnetic Properties of Sc(1–x)LuxVO3 (0.0<x<1.0), Chem. Mater. 19 (2007) 3945.

DOI: 10.1002/chin.200742020

Google Scholar

[19] F. Chi, Y. Qin, F. Hu, X. Wei, Y. Chen, Ch. Duan, M. Yin, Efficient red-emitting phosphor ScVO4 doped with Bi3+ and Eu3+ for near-ultraviolet-activated solid-state lighting, J. Mater. Sci. 52 (2017) 11592-11597.

DOI: 10.1007/s10853-017-1329-6

Google Scholar