[1]
A. Kulkarni, K. Meurisch, I. Teliban, R. Jahns, T. Strunskus, A. Piorra, R. Knöchel, F. Faupel, Giant magnetoelectric effect at low frequencies in polymer-based thin film composites, Appl. Phys. Lett. 104, (2014) 022904.
DOI: 10.1063/1.4860664
Google Scholar
[2]
H. Qu, CMOS MEMS Fabrication Technologies and Devices, Micromachines 7 (2016) 14.
Google Scholar
[3]
M. Akiyama, T. Komohara, K. Kano, A. Teshigahara, Y. Takeuchi, N. Kawahara, Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering, Adv. Mater. 21 (2009) 593-596.
DOI: 10.1002/adma.200802611
Google Scholar
[4]
M. Moreira, J. Bjuström, I. Katardjev, V. Yantchev, Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications, Vacuum (2011) 23-26.
DOI: 10.1016/j.vacuum.2011.03.026
Google Scholar
[5]
M. Schneider, A. Bittner, U. Schmid, Thickness dependence of Young's modulus and residual stress of sputtered aluminum nitride thin films, Appl. Phys. Lett. 105 (2014) 201912. DOI: doi.org/10.1063/1.4902448.
DOI: 10.1063/1.4902448
Google Scholar
[6]
A. Teshigahara, K. Hashimoto, M. Akiyama, Scandium aluminum nitride: Highly piezoelectric thin film for RF SAW devices in multi GHz range, 2012 IEEE International Ultrasonics Symposium, Dresden (2012) 1-5.
DOI: 10.1109/ultsym.2012.0481
Google Scholar
[7]
B. Hähnlein, P. Schaaf, J. Pezoldt, Size effect of Young's modulus in AlN thin layers, J. Appl. Phys. 116 (2014) 124306.
DOI: 10.1063/1.4896496
Google Scholar
[8]
R. Melik, E. Unal, N.K. Perkgoz, C. Puttlitz, H.V. Demir, RF-MEMS Load Sensors with Enhanced Q-factor and Sensitivity in a Suspended Architecture, Microelectron. Eng. 88 (2011) 247-253.
DOI: 10.1016/j.mee.2010.10.041
Google Scholar
[9]
K. Tonisch, V. Cimalla, C. Foerster, H. Romanus, O. Ambacher, D. Dontsov, Piezoelectric properties of polycrystalline AlN thin films for MEMS application, Sensor Actuat. A 132 (2006) 658-663.
DOI: 10.1016/j.sna.2006.03.001
Google Scholar
[10]
S. Zhang, D. Hole, W.Y. Fu, C.J. Humphreys, M.A. Moram, Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides, J. Appl. Phys. 114 (2013) 133510.
DOI: 10.1063/1.4824179
Google Scholar
[11]
R. Deng, K. Jiang, D. Gall, Optical phonon modes in Al1−xScxN, J. Appl. Phys. 115 (2014) 013506.
Google Scholar
[12]
W.B. Wang, Y.Q. Fu, J.J. Chen, W.P. Xuan, J.K. Chen, X.Z. Wang, P. Mayrhofer, P.F. Duan, A. Bittner, U. Schmid, J.K. Luo, AlScN thin film based surface acoustic wavedevices with enhanced microfluidic performance, J. Micromech. Microeng. 26 (2016) 075006.
DOI: 10.1088/0960-1317/26/7/075006
Google Scholar
[13]
F.J. Manjón, D. Errandonea, A.H. Romero, N. Garro, J. Serrano, M. Kuball, Lattice dynamics of wurtzite and rocksalt AlN under high pressure: Effect of compression on the crystal anisotropy of wurtzite-type semiconductors, Phys. Rev. B 77 (2008) 205204.
DOI: 10.1103/physrevb.77.205204
Google Scholar
[14]
J. M. Wagner, F. Bechstedt, Properties of strained wurtzite GaN and AlN: Ab initio studies, Phys. Rev. B 66 (2002) 115202.
DOI: 10.1103/physrevb.66.115202
Google Scholar
[15]
U. Haboeck, H. Siegle, A. Hoffmann, C. Thomsen, Lattice dynamics in GaN and AlN probed with first- and second-order Raman spectroscopy, Phys. Status solidi C 0 (2003) 1710–1731.
DOI: 10.1002/pssc.200303130
Google Scholar