Structural Analysis of Sputtered Sc(x)Al(1-x)N Layers for Sensor Applications

Article Preview

Abstract:

Scandium aluminum nitride (ScxAl1-xN) is a promising material for sensor applications as it exhibits enhanced piezoelectric properties compared to pristine AlN while maintaining other advantageous properties like high thermal stability. Magnetoelectric sensors in particular are used to detect magnetic fields which leads to special requirements regarding the investigated ScAlN in order to achieve high sensor sensitivities. Co-sputtered ScAlN layers are investigated in this work using XRD, XPS, FTIR and Raman spectroscopy for scandium concentrations from 0 to 34 %. The impact of Sc incorporation regarding residual biaxial strain and bond softening is discussed on basis of the experimental results. The activity of the B1 and E2 modes found in the FTIR measurements is of special interest as the presumably oxygen related excitation is expected to influence the piezoelectric properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-18

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kulkarni, K. Meurisch, I. Teliban, R. Jahns, T. Strunskus, A. Piorra, R. Knöchel, F. Faupel, Giant magnetoelectric effect at low frequencies in polymer-based thin film composites, Appl. Phys. Lett. 104, (2014) 022904.

DOI: 10.1063/1.4860664

Google Scholar

[2] H. Qu, CMOS MEMS Fabrication Technologies and Devices, Micromachines 7 (2016) 14.

Google Scholar

[3] M. Akiyama, T. Komohara, K. Kano, A. Teshigahara, Y. Takeuchi, N. Kawahara, Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering, Adv. Mater. 21 (2009) 593-596.

DOI: 10.1002/adma.200802611

Google Scholar

[4] M. Moreira, J. Bjuström, I. Katardjev, V. Yantchev, Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications, Vacuum (2011) 23-26.

DOI: 10.1016/j.vacuum.2011.03.026

Google Scholar

[5] M. Schneider, A. Bittner, U. Schmid, Thickness dependence of Young's modulus and residual stress of sputtered aluminum nitride thin films, Appl. Phys. Lett. 105 (2014) 201912. DOI: doi.org/10.1063/1.4902448.

DOI: 10.1063/1.4902448

Google Scholar

[6] A. Teshigahara, K. Hashimoto, M. Akiyama, Scandium aluminum nitride: Highly piezoelectric thin film for RF SAW devices in multi GHz range, 2012 IEEE International Ultrasonics Symposium, Dresden (2012) 1-5.

DOI: 10.1109/ultsym.2012.0481

Google Scholar

[7] B. Hähnlein, P. Schaaf, J. Pezoldt, Size effect of Young's modulus in AlN thin layers, J. Appl. Phys. 116 (2014) 124306.

DOI: 10.1063/1.4896496

Google Scholar

[8] R. Melik, E. Unal, N.K. Perkgoz, C. Puttlitz, H.V. Demir, RF-MEMS Load Sensors with Enhanced Q-factor and Sensitivity in a Suspended Architecture, Microelectron. Eng. 88 (2011) 247-253.

DOI: 10.1016/j.mee.2010.10.041

Google Scholar

[9] K. Tonisch, V. Cimalla, C. Foerster, H. Romanus, O. Ambacher, D. Dontsov, Piezoelectric properties of polycrystalline AlN thin films for MEMS application, Sensor Actuat. A 132 (2006) 658-663.

DOI: 10.1016/j.sna.2006.03.001

Google Scholar

[10] S. Zhang, D. Hole, W.Y. Fu, C.J. Humphreys, M.A. Moram, Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides, J. Appl. Phys. 114 (2013) 133510.

DOI: 10.1063/1.4824179

Google Scholar

[11] R. Deng, K. Jiang, D. Gall, Optical phonon modes in Al1−xScxN, J. Appl. Phys. 115 (2014) 013506.

Google Scholar

[12] W.B. Wang, Y.Q. Fu, J.J. Chen, W.P. Xuan, J.K. Chen, X.Z. Wang, P. Mayrhofer, P.F. Duan, A. Bittner, U. Schmid, J.K. Luo, AlScN thin film based surface acoustic wavedevices with enhanced microfluidic performance, J. Micromech. Microeng. 26 (2016) 075006.

DOI: 10.1088/0960-1317/26/7/075006

Google Scholar

[13] F.J. Manjón, D. Errandonea, A.H. Romero, N. Garro, J. Serrano, M. Kuball, Lattice dynamics of wurtzite and rocksalt AlN under high pressure: Effect of compression on the crystal anisotropy of wurtzite-type semiconductors, Phys. Rev. B 77 (2008) 205204.

DOI: 10.1103/physrevb.77.205204

Google Scholar

[14] J. M. Wagner, F. Bechstedt, Properties of strained wurtzite GaN and AlN: Ab initio studies, Phys. Rev. B 66 (2002) 115202.

DOI: 10.1103/physrevb.66.115202

Google Scholar

[15] U. Haboeck, H. Siegle, A. Hoffmann, C. Thomsen, Lattice dynamics in GaN and AlN probed with first- and second-order Raman spectroscopy, Phys. Status solidi C 0 (2003) 1710–1731.

DOI: 10.1002/pssc.200303130

Google Scholar